
Agilent 86100A/B
Wide-Bandwidth Oscilloscope
Programmer’s Guide

book.book Page i Friday, July 12, 2002 1:51 PM

ii

Notices
© Agilent Technologies, Inc. 2002

No part of this manual may be repro-
duced in any form or by any means
(including electronic storage and
retrieval or translation into a foreign lan-
guage) without prior agreement and writ-
ten consent from Agilent Technologies,
Inc. as governed by United States and
international copyright lays.

Manual Part Number

86100-90049

Edition

First edition, June 2002

Printed in USA

Agilent Technologies, Inc.
Lightwave Division
3910 Brickway Boulevard
Santa Rosa, CA 95403, USA

Warranty

The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future edi-
tions. Further, to the maximum extent
permitted by applicable law, Agilent dis-
claims all warranties, either express or
implied, with regard to this manual and
any information contained herein, includ-
ing but not limited to the implied warran-
ties of merchantability and fitness for a
particular purpose. Agilent shall not be
liable for errors or for incidental or conse-
quential damages in connection with the
furnishing, use, or performance of this
document or of any information con-
tained herein. Should Agilent and the
user have a separate written agreement
with warranty terms covering the mate-
rial in this document that conflict with
these terms, the warranty terms in the
separate agreement shall control.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

Restricted Rights Legend

If software is for use in the performance
of a U.S. Government prime contract or
subcontract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S.
Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment users will receive no greater
than Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR 252.227-
7015 (b)(2) (November 1995), as appli-
cable in any technical data.

Safety Notices

CAUTION
Caution denotes a hazard. It calls attention
to a procedure which, if not correctly per-
formed or adhered to, could result in
damage to or destruction of the product.
Do not proceed beyond a caution sign
until the indicated conditions are fully
understood and met.

WARNING
Warning denotes a hazard. It calls attention
to a procedure which, if not correctly per-
formed or adhered to, could result in
injury or loss of life. Do not proceed
beyond a warning sign until the indicated
conditions are fully understood and met.

book.book Page ii Friday, July 12, 2002 1:51 PM

Contents

book.book Page 1 Friday, July 12, 2002 1:51 PM
1 Introduction

Communicating with the Analyzer 1-2
Output Command 1-3
Device Address 1-3
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-4
Program Data 1-5
Header Types 1-5
Duplicate Mnemonics 1-7
Query Headers 1-7
Program Header Options 1-8
Character Program Data 1-9
Numeric Program Data 1-9
Embedded Strings 1-10
Program Message Terminator 1-10
Common Commands within a Subsystem 1-10
Selecting Multiple Subsystems 1-11
File Names and Types 1-11
File Locations 1-13
Getting Started Programming 1-15
Initialization 1-15
Example Program 1-17
Using the DIGITIZE Command 1-18
Receiving Information from the Analyzer 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-21
Analyzer Status 1-22

2 Interface Functions

GPIB Interface Connector 2-2
GPIB Default Startup Conditions 2-2
Interface Capabilities 2-3
Command and Data Concepts 2-3
Communicating Over the Bus 2-4
Contents-1

Contents

book.book Page 2 Friday, July 12, 2002 1:51 PM
Bus Commands 2-5

3 Status Reporting

Status Reporting Data Structures 3-6
Status Byte Register 3-9
Service Request Enable Register 3-11
Trigger Event Register (TRG) 3-11
Standard Event Status Register 3-12
Standard Event Status Enable Register 3-13
User Event Register (UER) 3-13
Local Event Register (LCL) 3-14
Operation Status Register (OPR) 3-14
Clock Recovery Event Register (CRER) 3-14
Limit Test Event Register (LTER) 3-15
Acquisition Event Register (AER) 3-16
Mask Test Event Register (MTER) 3-16
Precision Timebase Event Register (PTER) 3-17
Error Queue 3-17
Output Queue 3-18
Message Queue 3-18
Clearing Registers and Queues 3-18

4 Message Communication and System Functions

Protocols 4-2

5 Programming Conventions

Data Flow 5-2
Truncation Rule 5-3
The Command Tree 5-4
Infinity Representation 5-11
Sequential and Overlapped Commands 5-11
Response Generation 5-11
EOI 5-11

6 Using Multiple Databases

Using Multiple Databases in Remote Programs 6-3
Downloading a Database 6-3
Contents-2

Contents

book.book Page 3 Friday, July 12, 2002 1:51 PM
Auto Skew 6-4

7 Sample Programs

Sample Program Structure 7-3
Sample C Programs 7-4
init.c - Initialization 7-5
init.c - Global Definitions and Main Program 7-6
init.c - Initializing the Analyzer 7-7
init.c - Acquiring Data 7-8
init.c - Making Automatic Measurements 7-9
init.c - Error Checking 7-11
init.c - Transferring Data to the PC 7-13
init.c - Converting Waveform Data 7-15
init.c - Storing Waveform Time and Voltage Information 7-16
gen_srq.c - Generating a Service Request 7-17
Listings of the Sample Programs 7-21
hpib_decl.h Sample Program 7-22
init.c Sample Program 7-24
gen_srq.c Sample Program 7-30
srq.c Sample Program 7-32
learnstr.c Sample Program 7-34
sicl_IO.c Sample Program 7-37
natl_IO.c Sample Program 7-40
multidatabase.c Sample Program 7-44
init.bas Sample Program 7-48
srq.bas Sample Program 7-54
lrn_str.bas Sample Program 7-57

8 Common Commands

Receiving Common Commands 8-2
Status Registers 8-2
Common Commands 8-3
*CLS (Clear Status) 8-3
*ESE (Event Status Enable) 8-3
*ESR? (Event Status Register) 8-5
*IDN? (Identification Number) 8-6
*LRN? (Learn) 8-6
Contents-3

Contents

book.book Page 4 Friday, July 12, 2002 1:51 PM
*OPC (Operation Complete) 8-7
*OPT? (Option) 8-9
*RCL (Recall) 8-9
*RST (Reset) 8-10
*SAV (Save) 8-14
*SRE (Service Request Enable) 8-14
*STB? (Status Byte) 8-16
*TRG (Trigger) 8-18
*TST? (Test) 8-18
*WAI (Wait-to-Continue) 8-19

9 Root Level Commands

Status Reporting Data Structures 9-3
Root Level Commands 9-3
AEEN (Acquisition Limits Event Enable register) 9-3
ALER? (Acquisition Limits Event Register) 9-3
AUToscale 9-4
BLANk 9-5
CDISplay 9-6
COMMents 9-6
CREE (Clock Recovery Event Enable Register) 9-6
CRER? (Clock Recovery Event Register) 9-7
DIGitize 9-8
LER? (Local Event Register) 9-9
LTEE (Limit Test Event Enable register) 9-10
LTER? (Limit Test Event Register) 9-10
MODel? 9-11
MTEE (Mask Test Event Enable Register) 9-11
MTER? (Mask Test Event Register) 9-12
OPEE 9-12
OPER? 9-13
PRINt 9-13
RECall:SETup 9-13
RUN 9-14
SERial (Serial Number) 9-14
SINGle 9-15
STOP 9-15
Contents-4

Contents

book.book Page 5 Friday, July 12, 2002 1:51 PM
STORe:SETup 9-15
STORe:WAVeform 9-16
TER? (Trigger Event Register) 9-16
UEE (User Event Enable register) 9-17
UER? (User Event Register) 9-17
VIEW 9-17

10 System Commands

DATE 10-2
DSP 10-3
ERRor? 10-3
HEADer 10-5
LONGform 10-6
MODE 10-7
SETup 10-7
TIME 10-9

11 Acquire Commands

AVERage 11-2
BEST 11-2
COUNt 11-3
LTESt 11-4
POINts 11-4
RUNTil 11-5
SSCReen 11-6
SSCReen:AREA 11-8
SSCReen:IMAGe 11-8
SWAVeform 11-9
SWAVeform:RESet 11-10

12 Calibration Commands

Mainframe Calibration 12-2
Module Calibration 12-2
Probe Calibration 12-4
CANCel 12-5
CONTinue 12-5
ERATio:DLEVel? 12-5
Contents-5

Contents

book.book Page 6 Friday, July 12, 2002 1:51 PM
ERATio:STARt 12-6
ERATio:STATus? 12-6
FRAMe:LABel 12-6
FRAMe:STARt 12-7
FRAMe:TIME? 12-7
MODule:LRESistance 12-7
MODule:OCONversion? 12-8
MODule:OPOWer 12-8
MODule:OPTical 12-8
MODule:OWAVelength 12-9
MODule:STATus? 12-9
MODule:TIME? 12-9
MODule:VERTical 12-10
OUTPut 12-10
PROBe 12-11
RECommend? 12-11
SAMPlers 12-12
SDONe? 12-12
SKEW 12-13
SKEW:AUTO 12-13
STATus? 12-14
Calibration Procedure 12-14

13 Clock Recovery Commands

LOCKed? 13-2
RATE 13-2
SPResent? 13-4

14 Channel Commands

BANDwidth 14-2
DISPlay 14-3
FDEScription? 14-3
FILTer 14-4
FSELect 14-4
OFFSet 14-5
PROBe 14-6
PROBe:CALibrate 14-6
Contents-6

Contents

book.book Page 7 Friday, July 12, 2002 1:51 PM
RANGe 14-6
SCALe 14-7
TDRSkew 14-8
UNITs 14-9
UNITs:ATTenuation 14-9
UNITs:OFFSet 14-9
WAVelength 14-9

15 Disk Commands

CDIRectory 15-2
DELete 15-3
DIRectory? 15-3
LOAD 15-4
MDIRectory 15-5
PWD? 15-5
SIMage 15-6
STORe 15-7

16 Display Commands

CGRade:LEVels? 16-2
CONNect 16-3
DATA? 16-3
DCOLor (Default COLor) 16-3
GRATicule 16-4
LABel 16-4
LABel:DALL 16-5
PERSistence 16-5
RRATe 16-6
SCOLor 16-7
SSAVer 16-8

17 Function Commands

DISPlay 17-2
FUNCtion<N>? 17-3
HORizontal 17-4
HORizontal:POSition 17-4
HORizontal:RANGe 17-5
Contents-7

Contents

book.book Page 8 Friday, July 12, 2002 1:51 PM
INVert 17-6
MAGNify 17-6
MAXimum 17-7
MINimum 17-7
OFFSet 17-8
RANGe 17-9
SUBTract 17-9
VERSus 17-10
VERTical 17-11
VERTical:OFFSet 17-11
VERTical:RANGe 17-12

18 Hardcopy Commands

AREA 18-2
DPRinter 18-2
FACTors 18-4
IMAGe 18-5
PRINters? 18-5

19 Histogram Commands

Histograms and the Database 19-3
AXIS 19-4
MODE 19-4
SCALe:SIZE 19-5
SOURce 19-5
WINDow:BORDer 19-6
WINDow:DEFault 19-6
WINDow:SOURce 19-6
WINDow:X1Position 19-7
WINDow:X2Position 19-8
WINDow:Y1Position 19-8
WINDow:Y2Position 19-9

20 Limit Test Commands

FAIL 20-3
LLIMit 20-4
MNFound 20-4
Contents-8

Contents

book.book Page 9 Friday, July 12, 2002 1:51 PM
RUNTil 20-6
SOURce 20-7
SSCReen 20-8
SSCReen:AREA 20-9
SSCReen:IMAGe 20-10
SSUMmary 20-10
SWAVeform 20-11
SWAVeform:RESet 20-12
TEST 20-12
ULIMit 20-13

21 Marker Commands

PROPagation 21-2
RPANnotation 21-3
STATe 21-3
X1Position 21-4
X1Y1source 21-5
X2Position 21-5
X2Y2source 21-6
XDELta? 21-6
XUNITs 21-7
Y1Position 21-7
Y2Position 21-8
YDELta? 21-9
YUNITs 21-9

22 Mask Test Commands

Mask Handling 22-3
Mask Files 22-3
ALIGn 22-4
AMEThod 22-4
COUNt:FAILures? 22-5
COUNt:FSAMples? 22-5
COUNt:HITS? 22-6
COUNt:SAMPles? 22-6
COUNt:WAVeforms? 22-7
DELete 22-7
Contents-9

Contents

book.book Page 10 Friday, July 12, 2002 1:51 PM
EXIT 22-8
LOAD 22-8
MASK:DELete 22-9
MMARgin:PERCent 22-9
MMARgin:STATe 22-10
RUNTil 22-10
SAVE 22-11
SCALe:DEFault 22-12
SCALe:MODE 22-12
SCALe:SOURce? 22-13
SCALe:X1 22-13
SCALe:XDELta 22-14
SCALe:Y1 22-15
SCALe:Y2 22-15
SOURce 22-16
SCALe:YTRack 22-17
SSCReen 22-17
SSCReen:AREA 22-19
SSCReen:IMAGe 22-19
SSUMmary 22-20
STARt 22-21
SWAVeform 22-21
SWAVeform:RESet 22-22
TEST 22-23
TITLe? 22-23

23 Measure Commands

Measurement Setup 23-3
User-Defined Measurements 23-3
Measurement Error 23-3
Making Measurements 23-4
ANNotation 23-6
APOWer 23-6
CGRade:AMPLitude 23-7
CGRade:BITRate 23-8
CGRade:COMPlete 23-8
CGRade:CRATio 23-9
Contents-10

Contents

book.book Page 11 Friday, July 12, 2002 1:51 PM
CGRade:CROSsing 23-10
CGRade:DCDistortion 23-11
CGRade:DCYCle 23-12
CGRade:EHEight 23-12
CGRade:ERATio 23-13
CGRade:ESN 23-14
CGRade:EWIDth 23-15
CGRade:JITTer 23-15
CGRade:OFACtor 23-16
CGRade:OLEVel 23-17
CGRade:PEAK? 23-18
CGRade:PWIDth 23-18
CGRade:SOURce 23-19
CGRade:ZLEVel 23-20
CLEar 23-20
DEFine 23-21
DEFine CGRade 23-23
DELTatime 23-24
DUTYcycle 23-25
FALLtime 23-26
FREQuency 23-26
HISTogram:HITS? 23-27
HISTogram:M1S? 23-28
HISTogram:M2S? 23-29
HISTogram:M3S? 23-29
HISTogram:MEAN? 23-30
HISTogram:MEDian? 23-30
HISTogram:PEAK? 23-31
HISTogram:PP? 23-31
HISTogram:PPOSition? 23-32
HISTogram:SCALe? 23-33
HISTogram:STDDev? 23-33
NWIDth 23-34
OVERshoot 23-35
PERiod 23-36
PWIDth 23-36
RESults? 23-37
Contents-11

Contents

book.book Page 12 Friday, July 12, 2002 1:51 PM
RISetime 23-40
SCRatch 23-41
SENDvalid 23-41
SOURce 23-42
TEDGe? 23-43
TMAX 23-44
TMIN 23-45
TVOLt? 23-45
VAMPlitude 23-46
VAVerage 23-47
VBASe 23-48
VMAX 23-49
VMIN 23-50
VPP 23-51
VRMS 23-51
VTIMe? 23-52
VTOP 23-53

24 TDR/TDT Commands

DCALib 24-3
PRESet 24-3
RATE 24-4
RESPonse 24-5
RESPonse:CALibrate 24-6
RESPonse:CALibrate:CANCel 24-6
RESPonse:CALibrate:CONTinue 24-7
RESPonse:HORizontal 24-7
RESPonse:HORizontal:POSition 24-8
RESPonse:HORizontal:RANGe 24-9
RESPonse:RISetime 24-10
RESPonse:TDRDest 24-11
RESPonse:TDRTDT 24-11
RESPonse:TDTDest 24-12
RESPonse:VERTical 24-13
RESPonse:VERTical:OFFSet 24-14
RESPonse:VERTical:RANGe 24-15
STIMulus 24-16
Contents-12

Contents

book.book Page 13 Friday, July 12, 2002 1:51 PM
25 Trigger Commands

ATTenuation 25-3
BWLimit 25-3
GATed 25-3
HYSTeresis 25-4
LEVel 25-4
SLOPe 25-4
SOURce 25-5

26 Timebase Commands

BRATe 26-2
POSition 26-2
PRECision 26-3
PRECision:RFRequency 26-4
PRECision:TREFerence 26-5
RANGe 26-5
REFerence 26-6
SCALe 26-7
UNITs 26-7

27 Waveform Commands

Data Acquisition 27-2
Waveform Data and Preamble 27-2
Data Conversion 27-3
Conversion from Data Value to Units 27-3
Data Format for GPIB Transfer 27-5
BANDpass? 27-5
BYTeorder 27-5
COUNt? 27-6
DATA 27-7
FORMat 27-9
POINts? 27-11
PREamble 27-11
SOURce 27-15
SOURce:CGRade 27-16
TYPE? 27-17
XDISplay? 27-18
Contents-13

Contents

book.book Page 14 Friday, July 12, 2002 1:51 PM
XINCrement? 27-18
XORigin? 27-19
XRANge? 27-19
XREFerence? 27-20
XUNits? 27-20
YDISplay? 27-21
YINCrement? 27-21
YORigin? 27-22
YRANge? 27-22
YREFerence? 27-23
YUNits? 27-23

28 Waveform Memory Commands

DISPlay 28-3
LOAD 28-3
SAVE 28-4
XOFFset 28-4
XRANge 28-4
YOFFset 28-5
YRANge 28-6

29 Language Compatibility

Agilent 83480A Commands Not Used in the Agilent 86100A/B 29-2

30 Error Messages

Error Queue 30-2
Error Numbers 30-3
Command Error 30-3
Execution Error 30-4
Device- or Analyzer-Specific Error 30-4
Query Error 30-5
List of Error Messages 30-6
Contents-14

book.book Page 1 Friday, July 12, 2002 1:51 PM
1

Communicating with the Analyzer 1-2
Output Command 1-3
Device Address 1-3
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-4
Program Data 1-5
Header Types 1-5
Duplicate Mnemonics 1-7
Query Headers 1-7
Program Header Options 1-8
Character Program Data 1-9
Numeric Program Data 1-9
Embedded Strings 1-10
Program Message Terminator 1-10
Common Commands within a Subsystem 1-10
Selecting Multiple Subsystems 1-11
File Names and Types 1-11
File Locations 1-13
Getting Started Programming 1-15
Initialization 1-15
Example Program 1-17
Using the DIGITIZE Command 1-18
Receiving Information from the Analyzer 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-21
Analyzer Status 1-22
Introduction

Introduction
Introduction to Programming

book.book Page 2 Friday, July 12, 2002 1:51 PM
Introduction to Programming

This chapter introduces the basics for remote programming of an analyzer.
The programming commands in this manual conform to the IEEE 488.2 Stan-
dard Digital Interface for Programmable Instrumentation. The programming
commands provide the means of remote control.

Basic operations that you can do with a computer (GPIB controller) and an
analyzer include:

• Set up the analyzer.

• Make measurements.

• Get data (waveform, measurements, configuration) from the analyzer.

• Send information, such as waveforms and configurations, to the analyzer.

Other tasks are accomplished by combining these functions.

.

Communicating with the Analyzer

Computers communicate with the analyzer by sending and receiving messages
over a remote interface, usually with GPIB programming. Commands for pro-
gramming normally appear as ASCII character strings embedded in the output
statements of a “host” language available on your computer. The input com-
mands of the host language are used to read in responses from the analyzer.

For example, HP BASIC uses the OUTPUT statement for sending commands
and queries. After a query is sent, the response is usually read using the
HP BASIC ENTER statement. The ENTER statement passes the value across
the bus to the computer and places it in the designated variable.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are written in
HP BASIC and C.
1-2

Introduction
Output Command

book.book Page 3 Friday, July 12, 2002 1:51 PM
For the GPIB interface, messages are placed on the bus using an output com-
mand and passing the device address, program message, and a terminator.
Passing the device address ensures that the program message is sent to the
correct GPIB interface and GPIB device.

This HP BASIC OUTPUT statement sends a command that sets the channel 1
scale value to 500 mV:

OUTPUT <device address>;":CHANNEL1:SCALE 500E-3"<terminator>

The device address represents the address of the device being programmed.
Each of the other parts of the above statement are explained in the following
pages.

Output Command

The output command depends entirely on the programming language.
Throughout this book, HP BASIC and ANSI C are used in the examples of indi-
vidual commands. If you are using other languages, you will need to find the
equivalents of HP BASIC commands like OUTPUT, ENTER, and CLEAR, to
convert the examples.

Device Address

The location where the device address must be specified depends on the pro-
gramming language you are using. In some languages, it may be specified out-
side the OUTPUT command. In HP BASIC, it is always specified after the
keyword OUTPUT. The examples in this manual assume that the analyzer and
interface card are at GPIB device address 707. When writing programs, the
device address varies according to how the bus is configured.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138–Suffix not allowed. Instead, use the convention for the suffix multiplier as
described in Chapter 4, “Message Communication and System Functions”.
1-3

Introduction
Instructions

book.book Page 4 Friday, July 12, 2002 1:51 PM
Instructions

Instructions, both commands and queries, normally appear as strings embed-
ded in a statement of your host language, such as HP BASIC, Pascal, or C. The
only time a parameter is not meant to be expressed as a string is when the
instruction's syntax definition specifies <block data>, such as HP BASIC’s
"learnstring" command. There are only a few instructions that use block data.

Instructions are composed of two main parts:

• The header, which specifies the command or query to be sent.

• The program data, which provides additional information to clarify the meaning
of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by
colons (:) that represent the operation to be performed by the analyzer. See
Chapter 5, “Programming Conventions” for more information.

Queries are formed by adding a question mark (?) to the end of the header.
Many instructions can be used as either commands or queries, depending on
whether or not you include the question mark. The command and query forms
of an instruction usually have different program data. Many queries do not use
any program data.

White Space (Separator)

White space is used to separate the instruction header from the program data.
If the instruction does not require any program data parameters, you do not
need to include any white space. In this manual, white space is defined as one
or more spaces. ASCII defines a space to be character 32, in decimal.
1-4

Introduction
Program Data

book.book Page 5 Friday, July 12, 2002 1:51 PM
Program Data

Program data is used to clarify the meaning of the command or query. It pro-
vides necessary information, such as whether a function should be on or off or
which waveform is to be displayed. Each instruction's syntax definition shows
the program data, and the values they accept. See “Numeric Program Data” on
page 1-9 for more information about general syntax rules and acceptable val-
ues.

When there is more than one data parameter, they are separated by
commas (,). You can add spaces around the commas to improve readability.

Header Types

There are three types of headers:

• Simple Command headers
• Compound Command headers
• Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and DIGI-
TIZE are examples of simple command headers typically used in this analyzer.
The syntax is:

<program mnemonic><terminator>

or

OUTPUT 707;”:AUTOSCALE”

When program data must be included with the simple command header (for
example, :DIGITIZE CHAN1), white space is added to separate the data from
the header. The syntax is:

<program mnemonic><separator><program data><terminator>

or

OUTPUT 707;”:DIGITIZE CHANNEL1,FUNCTION2”
1-5

Introduction
Header Types

book.book Page 6 Friday, July 12, 2002 1:51 PM
Compound Command Header

Compound command headers are a combination of two program mnemonics.
The first mnemonic selects the subsystem, and the second mnemonic selects
the function within that subsystem. The mnemonics within the compound
message are separated by colons. For example:

To execute a single function within a subsystem:

:<subsystem>:<function><separator><program data><terminator>

For example:

OUTPUT 707;”:CHANNEL1:BANDWIDTH HIGH”

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-
colon (;) to separate the commands:

:<subsystem>:<command><separator><data>;<command><separator><data><terminator>

For example:

:CHANNEL1:DISPLAY ON;BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2 func-
tions within the analyzer. The syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.
1-6

Introduction
Duplicate Mnemonics

book.book Page 7 Friday, July 12, 2002 1:51 PM
Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, the function mnemonic RANGE may be used to change the vertical
range or to change the horizontal range.

To set the vertical range of channel 1 to 0.4 volts full scale:

:CHANNEL1:RANGE .4

To set the horizontal time base to 1 second full scale:

:TIMEBASE:RANGE 1

CHANNEL1 and TIMEBASE are subsystem selectors, and determine which
range is being modified.

Query Headers

Command headers immediately followed by a question mark (?) are queries.
After receiving a query, the analyzer interrogates the requested subsystem
and places the answer in its output queue. The answer remains in the output
queue until it is read or until another command is issued. When read, the
answer is transmitted across the bus to the designated listener (typically a
computer). For example, the query:

:TIMEBASE:RANGE?

places the current time base setting in the output queue.

In HP BASIC, the computer input statement:

ENTER < device address >;Range

passes the value across the bus to the computer and places it in the variable
Range.

You can use query commands to find out how the analyzer is currently config-
ured. They are also used to get results of measurements made by the analyzer.
For example, the command:

:MEASURE:RISETIME?

tells the analyzer to measure the rise time of your waveform and place the
result in the output queue.
1-7

Introduction
Program Header Options

book.book Page 8 Friday, July 12, 2002 1:51 PM
The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME? you must follow it
with an input statement. In HP BASIC, this is usually done with an ENTER
statement immediately followed by a variable name. This statement reads the
result of the query and places the result in a specified variable.

Program Header Options

You can send program headers using any combination of uppercase or lower-
case ASCII characters. Analyzer responses, however, are always returned in
uppercase.

You may send program command and query headers in either long form (com-
plete spelling), short form (abbreviated spelling), or any combination of long
form and short form. For example:

:TIMEBASE:DELAY 1E-6 is the long form.

:TIM:DEL 1E-6 is the short form.

The rules for the short form syntax are described in Chapter 5, “Programming
Conventions”.

Handling Queries Properly

If you send another command or query before reading the result of a query, the output
buffer is cleared and the current response is lost. This also generates a query-interrupted
error in the error queue. If you execute an input statement before you send a query, it will
cause the computer to wait indefinitely.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for program
storage and reduces I/O activity.
1-8

Introduction
Character Program Data

book.book Page 9 Friday, July 12, 2002 1:51 PM
Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command
can be set to left, center, or right. The character program data in this case may
be LEFT, CENTER, or RIGHT. The command :TIMEBASE:REFERENCE
RIGHT sets the time base reference to right.

The available mnemonics for character program data are always included with
the instruction's syntax definition. Either the long form of commands, or the
short form (if one exists), may be sent. Uppercase and lowercase letters may
be mixed freely. When receiving responses, uppercase letters are used exclu-
sively.

Numeric Program Data

Some command headers require program data to be expressed numerically.
For example, :TIMEBASE:RANGE requires the desired full scale range to be
expressed numerically.

For numeric program data, you can use exponential notation or suffix multi-
pliers to indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that
the number should be whole. Any fractional part is ignored and truncated.
Numeric data parameters that accept fractional values are called real num-
bers. For more information see Chapter 2, “Interface Functions”.

All numbers are expected to be strings of ASCII characters.

• When sending the number 9, you would send a byte representing the ASCII
code for the character “9” (which is 57).

• A three-digit number like 102 would take up three bytes (ASCII codes 49, 48,
and 50). The number of bytes is figured automatically when you include the en-
tire instruction in a string.
1-9

Introduction
Embedded Strings

book.book Page 10 Friday, July 12, 2002 1:51 PM
Embedded Strings

Embedded strings contain groups of alphanumeric characters which are
treated as a unit of data by the analyzer. An example of this is the line of text
written to the advisory line of the analyzer with the :SYSTEM:DSP command:

:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (') or double (") quota-
tion marks. These strings are case-sensitive, and spaces act as legal characters
just like any other character.

Program Message Terminator

The program instructions within a data message are executed after the pro-
gram message terminator is received. The terminator may be either a NL
(New Line) character, an EOI (End-Or-Identify) asserted in the GPIB inter-
face, or a combination of the two. Asserting the EOI sets the EOI control line
low on the last byte of the data message. The NL character is an ASCII line-
feed (decimal 10).

Common Commands within a Subsystem

Common commands can be received and processed by the analyzer whether
they are sent over the bus as separate program messages or within other pro-
gram messages. If you have selected a subsystem, and a common command is
received by the analyzer, the analyzer remains in the selected subsystem. For
example, if the program message

":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the analyzer, the analyzer turns averaging on, then clears the
status information without leaving the selected subsystem.

New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and EOT
(End Of Text) terminator.
1-10

Introduction
Selecting Multiple Subsystems

book.book Page 11 Friday, July 12, 2002 1:51 PM
If some other type of command is received within a program message, you
must re-enter the original subsystem after the command. For example, the
program message

":ACQUIRE:AVERAGE ON;:AUTOSCALE;:ACQUIRE:AVERAGE:COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire
average count. In this example, :ACQUIRE must be sent again after the
AUTOSCALE command to re-enter the ACQUIRE subsystem and set count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon lets you enter a new subsystem. For exam-
ple:

<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

File Names and Types

When specifying a file name in a remote command, enclose the name in dou-
ble quotation marks, such as "filename". If you specify a path, the path should
be included in the quotation marks.

You can use the full path name, a relative path name, or no path. For example,
you can specify:

• a full path name: "C:\User Files\waveforms\channel2.wfm"

• a relative path name: "..\myfile.set" or “.\screen1.jpg”

• a simple file name: "Memory1.txt"

All files stored using remote commands have file name extensions.The follow-
ing table shows the file name extension used for each file type.

You Can Combine Compound and Simple Commands

Multiple commands may be any combination of compound and simple commands.
1-11

Introduction
File Names and Types

book.book Page 12 Friday, July 12, 2002 1:51 PM
If you do not specify an extension when storing a file, or specify an incorrect
extension, it will be corrected automatically according to the following rules:

• No extension specified: add the extension for the file type.

• Extension does not match file type: retain the filename, (including the current
extension) and add the appropriate extension.

You do not need to use an extension when loading a file if you use the optional
destination parameter. For example, :DISK:LOAD "STM1_OC3",SMASK will
automatically add .msk to the file name.

The following table shows the rules used when loading a specified file.

Table 1-1. File Name Extensions

File Type File Name Extension

Waveform - internal format .wfm

Waveform - text format (Verbose or Y values) .txt

Setup .set

Color grade - Gray Scale .cgs

Screen image .bmp, .eps, .gif, .pcx, .ps, .jpg, .tif

Mask .msk, .pcm

TDR/TDT .tdr

Note

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user
should not modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Indepen-
dent JPEG Group.

Table 1-2. Rules for Loading Files

File Name Extension Destination Rule

No extension Not specified Default to internal waveform format; add .wfm
extension
1-12

Introduction
File Locations

book.book Page 13 Friday, July 12, 2002 1:51 PM
File Locations

If you don’t specify a directory when storing a file, the location of the file will
be based on the file type. The following table shows the default locations for
storing files.

Extension does not match
file type

Not specified Default to internal waveform format; add .wfm
extension

Extension matches file type Not specified Use file name with no alterations; destination is
based on extension file type

No extension Specified Add extension for destination type; default for
waveforms is internal format (.wfm)

Extension does not match
destination file type

Specified Retain file name; add extension for destination
type. Default for waveforms is internal format
(.wfm)

Extension matches
destination file type

Specified Retain file name; destination is as specified

Table 1-2. Rules for Loading Files (Continued)

File Name Extension Destination Rule

Note

ASCII waveform files can be loaded only if the file name explicitly includes the .txt
extension.

Table 1-3. Default File Locations (Storing Files)

File Type Default Location

Waveform - internal format C:\User Files\waveforms

Waveform - text format (Verbose or Y values) C:\User Files\waveforms

Setup C:\User Files\setups

Color Grade - Gray Scale C:\User Files\colorgrade-grayscale

Screen Image C:\User Files\screen images

Mask C:\Scope\masks (standard masks)
C:\User Files\masks (user-defined masks)

TDR/TDT calibration data C:\User Files\TDR normalization
1-13

Introduction
File Locations

book.book Page 14 Friday, July 12, 2002 1:51 PM
When loading a file, you can specify the full path name, a relative path name,
or no path name. The following table shows the rules for locating files, based
on the path specified.

Files may be stored to or loaded from an internal hard drive under the root
path C:\User Files only. The only exceptions are the standard masks loaded
from C:\Scope\masks. Attempting to access files outside the root path will
generate an error message.

Files may be stored to or loaded from any path on the A:\ drive or on any
mapped network drive.

Table 1-4. File Locations (Loading Files)

File Name Rule

Full path name Use file name and path specified

Relative path name Full path name is formed relative to the present
working directory, set with the command
:DISK:CDIR. The present working directory can be
read with the query :DISK:PWD?

File name with no preceding path Add the file name to the default path
(C:\User Files) based on the file type.
1-14

Introduction
Getting Started Programming

book.book Page 15 Friday, July 12, 2002 1:51 PM
Getting Started Programming

The remainder of this chapter discusses how to set up the analyzer, how to
retrieve setup information and measurement results, how to digitize a wave-
form, and how to pass data to the computer. Chapter 23, “Measure Com-
mands” describes sending measurement data to the analyzer.

Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. For example, HP BASIC pro-
vides a CLEAR command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the analyzer

When you are using GPIB, CLEAR also resets the analyzer's parser. The parser
is the program that reads in the instructions you send.

After clearing the interface, initialize the analyzer to a preset state:

OUTPUT 707;"*RST" ! initializes the analyzer to a preset state

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing analyzers per-
forms a very useful function on unknown waveforms by automatically setting
up the vertical channel, time base, and trigger level of the analyzer.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>

Initializing the analyzer

The commands and syntax for initializing the analyzer are discussed in Chapter 8, “Com-
mon Commands”. Refer to your GPIB manual and programming language reference man-
ual for information on initializing the interface.
1-15

Introduction
Initialization

book.book Page 16 Friday, July 12, 2002 1:51 PM
Setting Up the Analyzer

A typical analyzer setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope.

A typical example of the commands sent to the analyzer are:

:CHANNEL1:RANGE 16;OFFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminator>
:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 µs/div), with delay of
100 µs. Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V,
and probe attenuation of 10.
1-16

Introduction
Example Program

book.book Page 17 Friday, July 12, 2002 1:51 PM
Example Program

This program demonstrates the basic command structure used to program the
analyzer.

10 CLEAR 707 ! Initialize analyzer interface
20 OUTPUT 707;"*RST" !Initialize analyzer to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
40 OUTPUT 707;":TIMEBASE:DELAY 25E-9"! Delay to 25 ns
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"! Display reference at center
60 OUTPUT 707;":CHANNEL1:RANGE .16"! Vertical range to 160 mV full scale
70 OUTPUT 707;":CHANNEL1:OFFSET -.04"! Offset to -40 mV
80 OUTPUT 707;":TRIGGER:LEVEL,-.4"! Trigger level to -0.4
90 OUTPUT 707;":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
100 OUTPUT 707;":SYSTEM:HEADER OFF"<terminator>
110 OUTPUT 707;":DISPLAY:GRATICULE FRAME"! Grid off
120 END

Overview of the Program

• Line 10 initializes the analyzer interface to a known state.

• Line 20 initializes the analyzer to a preset state.

• Lines 30 through 50 set the time base, the horizontal time at 500 µs full scale,
and 25 ns of delay referenced at the center of the graticule.

• Lines 60 through 70 set the vertical range to 160 millivolts full scale and the
center screen at −40 millivolts.

• Lines 80 through 90 configure the analyzer to trigger at −0.4 volts with normal
triggering.

• Line 100 turns system headers off.

• Line 110 turns the grid off.
1-17

Introduction
Using the DIGITIZE Command

book.book Page 18 Friday, July 12, 2002 1:51 PM
Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition
is stopped. The captured data can then be measured by the analyzer or trans-
ferred to the computer for further analysis. The captured data consists of two
parts: the preamble and the waveform data record.

After changing the analyzer configuration, the waveform buffers are cleared.
Before doing a measurement, the DIGITIZE command should be sent to
ensure new data has been collected.

You can send the DIGITIZE command with no parameters for a higher
throughput. Refer to the DIGITIZE command in Chapter 9, “Root Level Com-
mands” for details.

When the DIGITIZE command is sent to an analyzer, the specified channel’s
waveform is digitized with the current ACQUIRE parameters. Before sending
the :WAVEFORM:DATA? query to get waveform data, specify the WAVEFORM
parameters.

The number of data points comprising a waveform varies according to the
number requested in the ACQUIRE subsystem. The ACQUIRE subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGITIZE command. This allows you to specify exactly
what the digitized information contains. The following program example
shows a typical setup:

OUTPUT 707;":SYSTEM:HEADER OFF"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the analyzer to acquire eight averages. This means that
when the DIGITIZE command is received, the command will execute until the
waveform has been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the analyzer will start passing
the waveform information when queried.
1-18

Introduction
Receiving Information from the Analyzer

book.book Page 19 Friday, July 12, 2002 1:51 PM
Digitized waveforms are passed from the analyzer to the computer by sending
a numerical representation of each digitized point. The format of the numeri-
cal representation is controlled with the :WAVEFORM:FORMAT command and
may be selected as BYTE, WORD, or ASCII.

The easiest method of entering a digitized waveform depends on data struc-
tures, available formatting, and I/O capabilities. You must scale the integers to
determine the voltage value of each point. These integers are passed starting
with the leftmost point on the analyzer's display. For more information, refer
to Chapter 27, “Waveform Commands”.

When using GPIB, a digitize operation may be aborted by sending a Device
Clear over the bus (for example, CLEAR 707).

Receiving Information from the Analyzer

After receiving a query (command header followed by a question mark), the
analyzer places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued. When read,
the answer is transmitted across the interface to the computer. The input
statement for receiving a response message from an analyzer's output queue
typically has two parameters; the device address and a format specification for
handling the response message. For example, to read the result of the query
command :CHANNEL1:RANGE? you would execute the HP BASIC statement:

ENTER <device address>;Setting$

The device address parameter represents the address of the analyzer. This
would enter the current setting for the range in the string variable Setting$.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query :MEA-
SURE:RISETIME?, you must follow that query with an input statement. In
HP BASIC, this is usually done with an ENTER statement.

Note

The execution of the DIGITIZE command is subordinate to the status of ongoing limit
tests. (See commands ACQuire:RUNTil on page 11-5, MTEST:RUNTil on page 22-11, and
LTEST:RUNTil on page 20-6.) The DIGITIZE command will not capture data if the stop
condition for a limit test has been met.
1-19

Introduction
String Variable Example

book.book Page 20 Friday, July 12, 2002 1:51 PM
The format specification for handling response messages depends on both the
computer and the programming language.

String Variable Example

The output of the analyzer may be numeric or character data, depending on
what is queried. Refer to the specific commands for the formats and types of
data returned from queries.

For the example programs, assume that the device being programmed is at
device address 707. The actual address depends on how you have configured
the bus for your own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed
exactly the same way each time they are used. This example shows the data
being returned to a string variable:

10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the computer displays:

+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:

10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang
30 PRINT Rang
40 END

Handling Queries Properly

If you send another command or query before reading the result of a query, the output
buffer will be cleared and the current response will be lost. This will also generate a
query-interrupted error in the error queue. If you execute an input statement before you
send a query, it will cause the computer to wait indefinitely.
1-20

Introduction
Definite-Length Block Response Data

book.book Page 21 Friday, July 12, 2002 1:51 PM
After running this program, the computer displays:

.8

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data
bytes. This is particularly useful for sending large quantities of data or 8-bit
extended ASCII codes. The syntax is a pound sign (#) followed by a non-zero
digit representing the number of digits in the decimal integer. After the non-
zero digit is the decimal integer that states the number of 8-bit data bytes
being sent. This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:

#44000 <4000 bytes of data> <terminator>

The leftmost “4” represents the number of digits in the number of bytes, and
“4000” represents the number of bytes to be transmitted.

Multiple Queries

You can send multiple queries to the analyzer within a single program mes-
sage, but you must also read them back within a single program message. This
can be accomplished by either reading them back into a string variable or into
multiple numeric variables. For example, you could read the result of the
query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the
command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:

<range_value>;<delay_value>

Use the following program message to read the query :TIME-
BASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Result1,Result2
1-21

Introduction
Analyzer Status

book.book Page 22 Friday, July 12, 2002 1:51 PM
Analyzer Status

Status registers track the current status of the analyzer. By checking the ana-
lyzer status, you can find out whether an operation has completed, is receiving
triggers, and more. Chapter 3, “Status Reporting” explains how to check the
status of the analyzer.
1-22

book.book Page 1 Friday, July 12, 2002 1:51 PM
2

GPIB Interface Connector 2-2
GPIB Default Startup Conditions 2-2
Interface Capabilities 2-3
Command and Data Concepts 2-3
Communicating Over the Bus 2-4
Bus Commands 2-5
Interface Functions

Interface Functions
Interface Functions

book.book Page 2 Friday, July 12, 2002 1:51 PM
Interface Functions

The interface functions deal with general bus management issues, as well as
messages that can be sent over the bus as bus commands. In general, these
functions are defined by IEEE 488.1.

GPIB Interface Connector

The analyzer is equipped with a GPIB interface connector on the rear panel.
This allows direct connection to a GPIB equipped computer. You can connect
an external GPIB compatible device to the analyzer by installing a GPIB cable
between the two units. Finger tighten the captive screws on both ends of the
GPIB cable to avoid accidentally disconnecting the cable during operation.

A maximum of fifteen GPIB compatible instruments (including a computer)
can be interconnected in a system by stacking connectors. This allows the
analyzers to be connected in virtually any configuration, as long as there is a
path from the computer to every device operating on the bus.

C A U T I O N Avoid stacking more than three or four cables on any one connector. Multiple
connectors produce leverage that can damage a connector mounting.

GPIB Default Startup Conditions

The following default GPIB conditions are established during power-up.

• The Request Service (RQS) bit in the status byte register is set to zero.

• All of the event registers, the Standard Event Status Enable Register, Service
Request Enable Register, and the Status Byte Register are cleared.
2-2

Interface Functions
Interface Capabilities

book.book Page 3 Friday, July 12, 2002 1:51 PM
Interface Capabilities

The interface capabilities of this analyzer, as defined by IEEE 488.1, are listed
in the following table.

Command and Data Concepts

The GPIB has two modes of operation, command mode and data mode. The
bus is in the command mode when the Attention (ATN) control line is true.
The command mode is used to send talk and listen addresses and various bus
commands such as group execute trigger (GET).

Table 2-1. Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP1 Parallel Poll Remote Configuration

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

C0 Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)
2-3

Interface Functions
Communicating Over the Bus

book.book Page 4 Friday, July 12, 2002 1:51 PM
The bus is in the data mode when the ATN line is false. The data mode is used
to convey device-dependent messages across the bus. The device-dependent
messages include all of the analyzer specific commands, queries, and
responses found in this manual, including analyzer status information.

Communicating Over the Bus

Device addresses are sent by the computer in the command mode to specify
who talks and who listens. Because GPIB can address multiple devices
through the same interface card, the device address passed with the program
message must include the correct interface select code and the correct ana-
lyzer address.

Device Address = (Interface Select Code * 100) + (Analyzer Address)

Interface Select

Code

Each interface card has a unique interface select code. This code is used by
the computer to direct commands and communications to the proper inter-
face. The default is typically “7” for GPIB interface cards.

Analyzer Address Each analyzer on the GPIB must have a unique analyzer address between dec-
imal 0 and 30. This analyzer address is used by the computer to direct com-
mands and communications to the proper analyzer on an interface. The
default is typically “7” for this analyzer. You can change the analyzer address
in the Utilities, Remote Interface dialog box.

The Analyzer is at Address 707 in Examples

The examples in this manual assume that the analyzer is at device address 707.

Do Not Use Address 21 for an Analyzer Address

Address 21 is usually reserved for the Computer interface Talk/Listen address and should
not be used as an analyzer address.
2-4

Interface Functions
Bus Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions that are taken when these commands are
received by the analyzer.

Device Clear The device clear (DCL) and selected device clear (SDC) commands clear the
input buffer and output queue, reset the parser, and clear any pending com-
mands. If either of these commands is sent during a digitize operation, the dig-
itize operation is aborted.

Group Execute

Trigger

The group execute trigger (GET) command arms the trigger. This is the same
action produced by sending the RUN command.

Interface Clear The interface clear (IFC) command halts all bus activity. This includes unad-
dressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system computer.
2-5

book.book Page 6 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
3

Status Reporting Data Structures 3-6
Status Byte Register 3-9
Service Request Enable Register 3-11
Trigger Event Register (TRG) 3-11
Standard Event Status Register 3-12
Standard Event Status Enable Register 3-13
User Event Register (UER) 3-13
Local Event Register (LCL) 3-14
Operation Status Register (OPR) 3-14
Clock Recovery Event Register (CRER) 3-14
Limit Test Event Register (LTER) 3-15
Acquisition Event Register (AER) 3-16
Mask Test Event Register (MTER) 3-16
Precision Timebase Event Register (PTER) 3-17
Error Queue 3-17
Output Queue 3-18
Message Queue 3-18
Clearing Registers and Queues 3-18
Status Reporting

Status Reporting
Status Reporting

book.book Page 2 Friday, July 12, 2002 1:51 PM
Status Reporting

An overview of the analyzer's status reporting structure is shown in the follow-
ing figure. The status reporting structure shows you how to monitor specific
events in the analyzer. Monitoring these events allows determination of the
status of an operation, the availability and reliability of the measured data, and
more.

• To monitor an event, first clear the event, then enable the event. All of the
events are cleared when you initialize the analyzer.

• To generate a service request (SRQ) interrupt to an external computer, enable
at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and the
Output Queue are defined as the Standard Status Data Structure Model in
IEEE 488.2-1987. IEEE 488.2 defines data structures, commands, and com-
mon bit definitions for status reporting. There are also analyzer-defined struc-
tures and bits.
3-2

Status Reporting
Status Reporting

book.book Page 3 Friday, July 12, 2002 1:51 PM
Figure 3-1. Status Reporting Overview Block Diagram

The status reporting structure consists of the registers shown in this figure.
3-3

Status Reporting
Status Reporting

book.book Page 4 Friday, July 12, 2002 1:51 PM
The following table lists the bit definitions for each bit in the status reporting
data structure.

Table 3-1. Status Reporting Bit Definition

Bit Description Definition

PON Power On Indicates power is turned on.

URQ Not used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

DDE Device Dependent Error Indicates if the device was unable to complete an
operation for device dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

RQL Request Control Indicates if the device is requesting control.

OPC Operation Complete Indicates if the device has completed all pending
operations.

OPER Operation Status
Register

Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary Status Indicates if a device has a reason for requesting service.

ESB Event Status Bit Indicates if any of the enabled conditions in the Standard
Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have occurred
in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

LCL Local Indicates if a remote-to-local transition occurs.

FAIL Fail Indicates the specified test has failed.
3-4

Status Reporting
Status Reporting

book.book Page 5 Friday, July 12, 2002 1:51 PM
COMP Complete Indicates the specified test has completed.

LTEST Limit Test Indicates that one of the enabled conditions in the Limit
Test Register has occurred.

MTEST Mask Test Indicates that one of the enabled conditions in the Mask
Test Register has occurred.

ACQ Acquisition Indicates that acquisition test has completed in the
Acquisition Register.

CLCK CloCk Indicates that one of the enabled conditions in the Clock
Recovery Register has occurred.

UNLK UNLoCKed Indicates that an unlocked or trigger loss condition has
occurred in the Clock Recovery Module.

LOCK LOCKed Indicates that a locked or trigger capture condition has
occurred in the Clock Recovery Module.

NSPR1 No Signal Present
Receiver 1

Indicates that the Clock Recovery Module has detected
the loss of an optical signal on receiver one.

SPR1 Signal Present
Receiver 1

Indicates that the Clock Recovery Module has detected
an optical signal on receiver one.

NSPR2 No Signal Present
Receiver 2

Indicates that the Clock Recovery Module has detected
the loss of an optical signal on receiver two.

SPR2 Signal Present
Receiver 2

Indicates that the Clock Recovery Module has detected
an optical signal on receiver two.

LOSS Time Reference Loss Indicates the Precision Timebase (provided by the
Agilent 86107A module) has detected a time reference
loss due to a change in the reference clock signal.

PTIME Precision Timebase Indicates that one of the enabled conditions in the
Precision Timebase Register has occurred.

Table 3-1. Status Reporting Bit Definition (Continued)

Bit Description Definition
3-5

Status Reporting
Status Reporting Data Structures

book.book Page 6 Friday, July 12, 2002 1:51 PM
Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions
are shown in the following figure. To make it possible for any of the Standard
Event Status Register bits to generate a summary bit, the corresponding bits
must be enabled. These bits are enabled by using the *ESE common command
to set the corresponding bit in the Standard Event Status Enable Register.

To generate a service request (SRQ) interrupt to the computer, at least one bit
in the Status Byte Register must be enabled. These bits are enabled by using
the *SRE common command to set the corresponding bit in the Service
Request Enable Register. These enabled bits can then set RQS and MSS
(bit 6) in the Status Byte Register.

For more information about common commands, see Chapter 8, “Common
Commands”.
3-6

Status Reporting
Status Reporting Data Structures

book.book Page 7 Friday, July 12, 2002 1:51 PM
Figure 3-2. Status Reporting Data Structures
3-7

Status Reporting
Status Reporting Data Structures

book.book Page 8 Friday, July 12, 2002 1:51 PM
Status Reporting Data Structures (continued)
3-8

Status Reporting
Status Byte Register

book.book Page 9 Friday, July 12, 2002 1:51 PM
Status Byte Register

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable Reg-
ister to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the sum-
mary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets
the associated summary bit in the Status Byte Register.

The Status Byte Register can be read using either the *STB? common com-
mand query or the GPIB serial poll command. Both commands return the dec-
imal-weighted sum of all set bits in the register. The difference between the
two methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query
reads bit 6 as the Master Summary Status (MSS) and does not clear the bit or
have any affect on the SRQ interrupt. The value returned is the total bit
weights of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that, if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the analyzer to generate another SRQ interrupt when another enabled event
occurs.

The only other bit in the Status Byte Register affected by the *STB? query is
the Message Available bit (bit 4). If there are no other messages in the Output
Queue, bit 4 (MAV) can be cleared as a result of reading the response to the
*STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print
the sum of the two weights. Since these bits were not enabled to generate an
SRQ, bit 6 (weight = 64) is not set.
3-9

Status Reporting
Status Byte Register

book.book Page 10 Friday, July 12, 2002 1:51 PM
Example 1 This HP BASIC example uses the *STB? query to read the contents of the ana-
lyzer’s Status Byte Register when none of the register's summary bits are
enabled to generate an SRQ interrupt.

10 OUTPUT 707;":SYSTEM:HEADER OFF;*STB?"!Turn headers off
20 ENTER 707;Result!Place result in a numeric variable
30 PRINT Result!Print the result
40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Regis-
ter. The difference in the decimal value between this example and the previ-
ous one is the value of bit 6 (weight = 64). Bit 6 is set when the first enabled
summary bit is set, and is cleared when the Status Byte Register is read by the
serial poll command.

Example 2 This example uses the HP BASIC serial poll (SPOLL) command to read the
contents of the analyzer’s Status Byte Register.

10 Result = SPOLL(707)
20 PRINT Result
30 END

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte Register
because it resets bit 6 and allows the next enabled event that occurs to generate a new
SRQ interrupt.
3-10

Status Reporting
Service Request Enable Register

book.book Page 11 Friday, July 12, 2002 1:51 PM
Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in
the Status Byte Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command,
and the bits that are set are read with the *SRE? query. Bit 6 always returns 0.
Refer to the Status Reporting Data Structures shown in Figure 3-2.

Example This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable
Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the analyzer to generate an
SRQ interrupt under the following conditions:

• When one or more bytes in the Output Queue set bit 4 (MAV).

• When an enabled event in the Standard Event Status Register generates a sum-
mary bit that sets bit 5 (ESB).

Trigger Event Register (TRG)

This register sets the TRG bit in the status byte when a trigger event occurs.

The TRG event register stays set until it is cleared by reading the register or
using the *CLS (clear status) command. If your application needs to detect
multiple triggers, the TRG event register must be cleared after each one.

If you are using the Service Request to interrupt a computer operation when
the trigger bit is set, you must clear the event register after each time it is set.
3-11

Status Reporting
Standard Event Status Register

book.book Page 12 Friday, July 12, 2002 1:51 PM
Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following analyzer
status events:

• PON - Power On
• CME - Command Error
• EXE - Execution Error
• DDE - Device Dependent Error
• QYE - Query Error
• RQC - Request Control
• OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register. If
the corresponding bit is also enabled in the Standard Event Status Enable
Register, a summary bit (ESB) in the Status Byte Register is set.

The contents of the Standard Event Status Register can be read and the regis-
ter cleared by sending the *ESR? query. The value returned is the total bit
weights of all of the bits set at the present time.

Example This example uses the *ESR? query to read the contents of the Standard
Event Status Register.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Turn headers off
20 OUTPUT 707;"*ESR?"
30 ENTER 707;Result!Place result in a numeric variable
40 PRINT Result!Print the result
50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights.
3-12

Status Reporting
Standard Event Status Enable Register

book.book Page 13 Friday, July 12, 2002 1:51 PM
Standard Event Status Enable Register

For any of the Standard Event Status Register (SESR) bits to generate a sum-
mary bit, you must first enable the bit. Use the *ESE (Event Status Enable)
common command to set the corresponding bit in the Standard Event Status
Enable Register. Set bits are read with the *ESE? query.

Example Suppose your application requires an interrupt whenever any type of error
occurs. The error status bits in the Standard Event Status Register are bits
2 through 5. The sum of the decimal weights of these bits is 60. Therefore, you
can enable any of these bits to generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the analyzer sets one of these bits in the Standard
Event Status Register. Because the bits are all enabled, a summary bit is gen-
erated to set bit 5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

User Event Register (UER)

This register hosts the LCL bit (bit 0) from the Local Events Register. The
other 15 bits are reserved. You can read and clear this register using the UER?
query. This register is enabled with the UEE command. For example, if you
want to enable the LCL bit, you send a mask value of 1 with the UEE com-
mand; otherwise, send a mask value of 0.

Disabled SESR Bits Respond, but Do Not Generate a Summary Bit

Standard Event Status Register bits that are not enabled still respond to their correspond-
ing conditions (that is, they are set if the corresponding event occurs). However, because
they are not enabled, they do not generate a summary bit in the Status Byte Register.
3-13

Status Reporting
Local Event Register (LCL)

book.book Page 14 Friday, July 12, 2002 1:51 PM
Local Event Register (LCL)

This register sets the LCL bit in the User Event Register and the USR bit (bit
1) in the Status byte. It indicates a remote-to-local transition has occurred.
The LER? query is used to read and to clear this register.

Operation Status Register (OPR)

This register hosts the CLCK bit (bit 7), the LTEST bit (bit 8), the ACQ bit
(bit 9) and the MTEST bit (bit 10).

The CLCK bit is set when any of the enabled conditions in the Clock Recovery
Event Register have occurred.

The LTEST bit is set when a limit test fails or is completed and sets the corre-
sponding FAIL or COMP bit in the Limit Test Events Register.

The ACQ bit is set when the COMP bit is set in the Acquisition Event Register,
indicating that the data acquisition has satisfied the specified completion cri-
teria.

The MTEST bit is set when the Mask Test either fails specified conditions or
satisfies its completion criteria, setting the corresponding FAIl or COMP bits
in the Mask Test Events Register.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte register is
set. The Operation Status Register is read and cleared with the OPER? query.
The register output is enabled or disabled using the mask value supplied with
the OPEE command.

Clock Recovery Event Register (CRER)

This register hosts the UNLK bit (bit 0), LOCK bit (bit 1), NSPR1 bit (bit 2),
SPR1 bit (bit 3), NSPR2 bit (bit 4) and SPR2 (bit 5).

Bit 0 (UNLK) of the Clock Recovery Event Register is set when Clock Recov-
ery module becomes unlocked or trigger loss has occurred for the 83494A
family of modules.

Bit 1 (LOCK) of the Clock Recovery Event Register is set when Clock Recov-
ery module becomes locked or a trigger capture has occurred for the 83494A
family of modules.
3-14

Status Reporting
Limit Test Event Register (LTER)

book.book Page 15 Friday, July 12, 2002 1:51 PM
Bit 2 (NSPR1) of the Clock Recovery Event Register is set when Clock Recov-
ery module transitions to no longer detecting an optical signal on receiver one.

Bit 3 (SPR1) of the Clock Recovery Event Register is set when Clock Recovery
module transitions to detecting an optical signal on receiver one.

Bit 4 (NSPR2) of the Clock Recovery Event Register is set when Clock Recov-
ery module transitions to no longer detecting an optical signal on receiver two.

Bit 5 (SPR2) of the Clock Recovery Event Register is set when Clock Recovery
module transitions to detecting an optical signal on receiver two.

The Clock Recovery Event Register is read and cleared with the CRER? query.

When either of the UNLK, LOCK, NSPR1, SPR1, NSPR2 or SPR2 bits are set,
they in turn set CLCK bit (bit 7) of the Operation Status Register. Results
from the Clock Recovery Event Register can be masked by using the CREE
command to set the Clock Recovery Event Enable Register. Refer to the CREE
command in Chapter 9, “Root Level Commands” for enable and mask value
definitions.

Limit Test Event Register (LTER)

Bit 0 (COMP) of the Limit Test Event Register is set when the Limit Test com-
pletes. The Limit Test completion criteria are set by the LTESt:RUN com-
mand.

Bit 1 (FAIL) of the Limit Test Event Register is set when the Limit Test fails.
Failure criteria for the Limit Test are defined by the LTESt:FAIL command.

The Limit Test Event Register is read and cleared with the LTER? query.

When either the COMP or FAIL bits are set, they in turn set the LTEST bit
(bit 8) of the Operation Status Register. You can mask the COMP and FAIL
bits, thus preventing them from setting the LTEST bit, by defining a mask
using the LTEE command.

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3
3-15

Status Reporting
Acquisition Event Register (AER)

book.book Page 16 Friday, July 12, 2002 1:51 PM
Acquisition Event Register (AER)

Bit 0 (COMP) of the Acquisition Event Register is set when the acquisition
limits complete. The Acquisition completion criteria are set by the
ACQuire:RUNtil command. The Acquisition Event Register is read and cleared
with the ALER? query.

When the COMP bit is set, it in turn sets the ACQ bit (bit 9) of the Operation
Status Register. Results from the Acquisition Register can be masked by using
the AEEN command to set the Acquisition Event Enable Register to the value
0. You enable the COMP bit by setting the mask value to 1.

Mask Test Event Register (MTER)

Bit 0 (COMP) of the Mask Test Event Register is set when the Mask Test com-
pletes. The Mask Test completion criteria are set by the MTESt:RUMode com-
mand.

Bit 1 (FAIL) of the Mask Test Event Register is set when the Mask Test fails.
This will occur whenever any sample is recorded within any region defined in
the mask.

The Mask Test Event Register is read and cleared with the MTER? query.

When either the COMP or FAIL bits are set, they in turn set the MTEST bit
(bit 10) of the Operation Status Register. You can mask the COMP and FAIL
bits, thus preventing them from setting the MTEST bit, by setting correspond-
ing bits to zero using the MTEE command.

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3
3-16

Status Reporting
Precision Timebase Event Register (PTER)

book.book Page 17 Friday, July 12, 2002 1:51 PM
Precision Timebase Event Register (PTER)

Bit 0 (LOSS) of the Precision Timebase Event Register is set when loss of the
time reference occurs. Time reference is lost when a change in the amplitude
or frequency of the reference clock signal is detected. The Precision Timebase
Event Register is read and cleared with the PTER? query.

When the LOSS bit is set, it in turn sets the PTIME bit (bit 11) of the Opera-
tion Status Register. Results from the Precision Timebase Register can be
masked by using the PTEE command to set the Precision Timebase Event
Enable Register to the value 0. You enable the LOSS bit by setting the mask
value to 1.

Error Queue

As errors are detected, they are placed in an error queue. This queue is first
in, first out. If the error queue overflows, the last error in the queue is
replaced with error –350, “Queue overflow”. Any time the queue overflows,
the oldest errors remain in the queue, and the most recent error is discarded.
The length of the analyzer's error queue is 30 (29 positions for the error mes-
sages, and 1 position for the “Queue overflow” message).

The error queue is read with the SYSTEM:ERROR? query. Executing this
query reads and removes the oldest error from the head of the queue, which
opens a position at the tail of the queue for a new error. When all the errors
have been read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occurs:

• When the analyzer is powered up.
• When the analyzer receives the *CLS common command.
• When the last item is read from the error queue.

For more information on reading the error queue, refer to the SYS-
TEM:ERROR? query in Chapter 10, “System Commands”. For a complete list
of error messages, refer to Chapter 30, “Error Messages”.

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision
Timebase Module.
3-17

Status Reporting
Output Queue

book.book Page 18 Friday, July 12, 2002 1:51 PM
Output Queue

The output queue stores the analyzer-to-computer responses that are gener-
ated by certain analyzer commands and queries. The output queue generates
the Message Available summary bit when the output queue contains one or
more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte Reg-
ister. The output queue may be read with the HP BASIC ENTER statement.

Message Queue

The message queue contains the text of the last message written to the advi-
sory line on the screen of the analyzer. The queue is read with the SYS-
TEM:DSP? query. Note that messages sent with the SYSTem:DSP command
do not set the MSG status bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except
the output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.
3-18

Status Reporting
Clearing Registers and Queues

book.book Page 19 Friday, July 12, 2002 1:51 PM
Figure 3-3. Status Reporting Decision Chart
3-19

Status Reporting
Clearing Registers and Queues

book.book Page 20 Friday, July 12, 2002 1:51 PM
3-20

book.book Page 1 Friday, July 12, 2002 1:51 PM
4

Protocols 4-2
Functional Elements 4-2
Input Buffer 4-3
Output Queue 4-3
Parser 4-3
Protocol Overview 4-3
Protocol Operation 4-3
Protocol Exceptions 4-4
Suffix Multiplier 4-4
Suffix Unit 4-5
Message Communication and System
Functions

Message Communication and System Functions
Message Communication and System Functions

book.book Page 2 Friday, July 12, 2002 1:51 PM
Message Communication and System
Functions

This chapter describes the operation of analyzers that operate in compliance
with the IEEE 488.2 (syntax) standard. It is intended to give you enough basic
information about the IEEE 488.2 standard to successfully program the ana-
lyzer. You can find additional detailed information about the IEEE 488.2 stan-
dard in ANSI/IEEE Std 488.2-1987, “IEEE Standard Codes, Formats,

Protocols, and Common Commands.”

This analyzer series is designed to be compatible with other Agilent Technolo-
gies IEEE 488.2 compatible instruments. Analyzers that are compatible with
IEEE 488.2 must also be compatible with IEEE 488.1 (GPIB bus standard);
however, IEEE 488.1 compatible analyzers may or may not conform to the
IEEE 488.2 standard. The IEEE 488.2 standard defines the message exchange
protocols by which the analyzer and the computer will communicate. It also
defines some common capabilities that are found in all IEEE 488.2 analyzers.

This chapter also contains some information about the message communica-
tion and system functions not specifically defined by IEEE 488.2.

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme
used by the computer and the analyzer to communicate. This includes defin-
ing when it is appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Functional

Elements

Before proceeding with the description of the protocol, you should under-
stand a few system components.
4-2

Message Communication and System Functions
Protocols

book.book Page 3 Friday, July 12, 2002 1:51 PM
Input Buffer The input buffer of the analyzer is the memory area where commands and
queries are stored prior to being parsed and executed. It allows a computer to
send a string of commands, which could take some time to execute, to the
analyzer, then proceed to talk to another analyzer while the first analyzer is
parsing and executing commands.

Output Queue The output queue of the analyzer is the memory area where all output data, or
response messages, are stored until read by the computer.

Parser The analyzer's parser is the component that interprets the commands sent to
the analyzer and decides what actions should be taken. “Parsing” refers to the
action taken by the parser to achieve this goal. Parsing and execution of com-
mands begins when either the analyzer recognizes a program message termi-
nator, or the input buffer becomes full. If you want to send a long sequence of
commands to be executed, then talk to another analyzer while they are exe-
cuting, you should send all of the commands before sending the program mes-
sage terminator.

Protocol Overview The analyzer and computer communicate using program messages and
response messages. These messages serve as the containers into which sets of
program commands or analyzer responses are placed.

A program message is sent by the computer to the analyzer, and a response
message is sent from the analyzer to the computer in response to a query mes-
sage. A query message is defined as being a program message that contains
one or more queries. The analyzer will only talk when it has received a valid
query message and, therefore, has something to say. The computer should
only attempt to read a response after sending a complete query message, but
before sending another program message.

Protocol

Operation

When the analyzer is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

Remember This Rule of Analyzer Communication

The basic rule to remember is that the analyzer will only talk when prompted to, and it
then expects to talk before being told to do something else.
4-3

Message Communication and System Functions
Protocols

book.book Page 4 Friday, July 12, 2002 1:51 PM
The analyzer and the computer communicate by exchanging complete pro-
gram messages and response messages. This means that the computer should
always terminate a program message before attempting to read a response.
The analyzer will terminate response messages except during a hardcopy out-
put.

After a query message is sent, the next message should be the response mes-
sage. The computer should always read the complete response message asso-
ciated with a query message before sending another program message to the
same analyzer.

The analyzer allows the computer to send multiple queries in one query mes-
sage. This is referred to as sending a “compound query”. Multiple queries in a
query message are separated by semicolons. The responses to each of the
queries in a compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol

Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

Suffix Multiplier The suffix multipliers that the analyzer will accept are shown in Table 4-1.

Table 4-1. <suffix mult>

Value Mnemonic Value Mnemonic

1E18 EX 1E-3 m

1E15 PE 1E-6 u

1E12 T 1E-9 n

1E9 G 1E-12 p

1E6 MA 1E-15 f

1E3 K 1E-18 a
4-4

Message Communication and System Functions
Protocols

book.book Page 5 Friday, July 12, 2002 1:51 PM
Suffix Unit The suffix units that the analyzer will accept are shown in Table 4-2.

Table 4-2. <suffix unit>

Suffix Referenced Unit

V Volt

s Second

W Watt

BIT Bits

dB Decibel

% Percent

Hz Hertz
4-5

book.book Page 6 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
5

Data Flow 5-2
Truncation Rule 5-3
The Command Tree 5-4
Infinity Representation 5-11
Sequential and Overlapped Commands 5-11
Response Generation 5-11
EOI 5-11
Programming Conventions

Programming Conventions
Programming Conventions

book.book Page 2 Friday, July 12, 2002 1:51 PM
Programming Conventions

This chapter describes conventions used to program the Agilent 86100A/B,
and conventions used throughout this manual. A block diagram and descrip-
tion of data flow is included for understanding analyzer operations. A descrip-
tion of the command tree and command tree traversal is also included. See the
Quick Reference for more information about command syntax.

Data Flow

The data flow gives you an idea of where the measurements are made on the
acquired data and when the post-signal processing is applied to the data.

The following figure is a block diagram of the analyzer. The diagram is laid out
serially for a visual perception of how the data is affected by the analyzer.

Figure 5-1. Sample Data Processing
5-2

Programming Conventions
Truncation Rule

book.book Page 3 Friday, July 12, 2002 1:51 PM
The sample data is stored in the channel memory for further processing
before being displayed. The time it takes for the sample data to be displayed
depends on the number of post processes you have selected.

Averaging your sampled data helps remove any unwanted noise from your
waveform.

You can store your sample data in the analyzer’s waveform memories for use
as one of the sources in Math functions, or to visually compare against a wave-
form that is captured at a future time. The Math functions allow you to apply
mathematical operations on your sampled data. You can use these functions to
duplicate many of the mathematical operations that your circuit may be per-
forming to verify that your circuit is operating correctly.

The measurements section performs any of the automated measurements that
are available in the analyzer. The measurements that you have selected appear
at the bottom of the display.

The Connect Dots section draws a straight line between sample data points,
giving an analog look to the waveform. This is sometimes called linear interpo-
lation.

Truncation Rule

The following truncation rule is used to produce the short form (abbreviated
spelling) for the mnemonics used in the programming headers and alpha argu-
ments.

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth character is a
vowel. Then the mnemonic is the first three characters of the keyword. If the length of the
keyword is four characters or less, this rule does not apply, and the short form is the same
as the long form.
5-3

Programming Conventions
The Command Tree

book.book Page 4 Friday, July 12, 2002 1:51 PM
The following table shows how the truncation rule is applied to commands.

The Command Tree

The command tree in Figure 5-2 on page 5-6 shows all of the commands in the
Agilent 86100A/B and the relationship of the commands to each other. The
IEEE 488.2 common commands are not listed as part of the command tree
because they do not affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the analyzer, the parser is set to the “root” of the
command tree.

Command Types

The commands in this analyzer can be placed into three types: common com-
mands, root level commands, and subsystem commands.

• Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands are
independent of the tree and do not affect the position of the parser within the
tree. *RST is an example of a common command.

• Root level commands control many of the basic functions of the analyzer. These
commands reside at the root of the command tree. They can always be parsed
if they occur at the beginning of a program message or are preceded by a colon.
Unlike common commands, root level commands place the parser back at the
root of the command tree. AUTOSCALE is an example of a root level command.

Table 5-1. Mnemonic Truncation

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel, short form is the first three characters.
5-4

Programming Conventions
The Command Tree

book.book Page 5 Friday, July 12, 2002 1:51 PM
• Subsystem commands are grouped together under a common node of the com-
mand tree, such as the TIMEBASE commands. Only one subsystem may be se-
lected at a given time. When the analyzer is initially turned on, the command
parser is set to the root of the command tree and no subsystem is selected.

See Also

The Quick Reference for information about command syntax and command
syntax diagrams.

Tree Traversal

Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This
is referred to as a compound header. A compound header is a header made up
of two or more mnemonics separated by colons. The compound header con-
tains no spaces. The following rules apply to traversing the tree.

In the command tree, use the last mnemonic in the compound header as a ref-
erence point (for example, RANGE). Then find the last colon above that mne-
monic (TIMEBASE:). That is the point where the parser resides. Any
command below this point can be sent within the current program message
without sending the mnemonics which appear above them (for example, REF-
ERENCE).

Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the last byte)
places the parser at the root of the command tree. A leading colon is a colon that is the
first character of a program header. Executing a subsystem command places you in that
subsystem until a leading colon or a program message terminator is found.
5-5

Programming Conventions
The Command Tree

book.book Page 6 Friday, July 12, 2002 1:51 PM
Figure 5-2. Command Tree
5-6

Programming Conventions
The Command Tree

book.book Page 7 Friday, July 12, 2002 1:51 PM
Command Tree (Continued)
5-7

Programming Conventions
The Command Tree

book.book Page 8 Friday, July 12, 2002 1:51 PM
Command Tree (Continued)
5-8

Programming Conventions
The Command Tree

book.book Page 9 Friday, July 12, 2002 1:51 PM
Command Tree (Continued)
5-9

Programming Conventions
The Command Tree

book.book Page 10 Friday, July 12, 2002 1:51 PM
Tree Traversal Examples

The OUTPUT statements in the following examples are written using
HP BASIC 5.0. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF).

Example 1 Consider the following command:

OUTPUT 707;":CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need CHANNEL1
preceding it because the CHANNEL1:RANGE command sets the parser to the
CHANNEL1 node in the tree.

Example 2 Consider the following commands:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"

or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the
POSITION command in the compound command.

A second way to send these commands is shown in the second part of the
example. Since the program message terminator places the parser back at the
root of the command tree, TIMEBASE must be reselected to re-enter the
TIMEBASE node before sending the POSITION command.

Example 3 Consider the following command:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

In example 3, the leading colon before CHANNEL1 tells the parser to go back
to the root of the command tree. The parser can then recognize the
CHANNEL1:OFFSET command and enter the correct node.
5-10

Programming Conventions
Infinity Representation

book.book Page 11 Friday, July 12, 2002 1:51 PM
Infinity Representation

The representation for infinity for this analyzer is 9.99999E+37. This is also
the value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped com-
mands.

Sequential commands finish their task before the execution of the next com-
mand starts.

Overlapped commands run concurrently. Commands following an overlapped
command may be started before the overlapped command is completed. The
common commands *WAI and *OPC may be used to ensure that commands
are completely processed before subsequent commands are executed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for the following
reasons:

• When the query is parsed by the analyzer.

• When the computer addresses the analyzer to talk so that it may read the re-
sponse.

This analyzer buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.
5-11

Programming Conventions
EOI

book.book Page 12 Friday, July 12, 2002 1:51 PM
5-12

book.book Page 1 Friday, July 12, 2002 1:51 PM
6

Using Multiple Databases in Remote Programs 6-3
Downloading a Database 6-3
Auto Skew 6-4
Using Multiple Databases

Using Multiple Databases
Multiple Databases

book.book Page 2 Friday, July 12, 2002 1:51 PM
Multiple Databases

Eye/Mask measurements in the Agilent 86100A are based on statistical data
that is acquired and stored in the color grade/gray scale database. The color
grade/gray scale database consists of all data samples displayed on the display
graticule. The measurement algorithms are dependent upon histograms
derived from the database. This database is internal to the instrument’s appli-
cations. The color grade/gray scale database cannot be imported into an
external database application.

Firmware revision A.03.00 and later allows for multiple color grade/gray scale
databases to be acquired and displayed simultaneously. his includes

• all four instrument channels

• all four math functions

• one saved color grade/gray scale file

The ability to use multiple databases allows for the comparison of

• channels to each other

• channels to a saved color grade/gray scale file

• functions to the channel data on which it is based

The advantage of acquiring and displaying channels and functions simulta-
neously is test times are greatly reduced. For example, the time taken to
acquire two channels in parallel is approximately the same time taken to
acquire a single channel.

Eye/Mask Measurements

If you want to perform an eye measurement, it is necessary that you first
produce an eye diagram by triggering the instrument with a synchronous
clock signal. Measurements made on a pulse waveform while in Eye/Mask
mode will fail.
6-2

Using Multiple Databases
Using Multiple Databases in Remote Programs

book.book Page 3 Friday, July 12, 2002 1:51 PM
Using Multiple Databases in Remote Programs

You will notice that throughout this manual, most commands that control his-
tograms, mask tests, or color grade data have additional optional parameters
that were not available in firmware revisions prior to A.03.00. You can use the
commands to control a single channel or add the argument APPend to enable
more than one channel. The following example illustrates two uses of the
CHANnel<n>:DISPlay command.

SYSTem:MODE EYE
CHANnel1:DISPlay ON
CHANnel2:DISPlay ON

The result using the above set of commands, is Channel 1 cleared and disabled
while Channel 2 is enabled and displayed.

However, by adding the argument APPend to the last command of the set,
both Channels 1 and 2 will be enabled and displayed .

SYSTem:MODE EYE
CHANnel1:DISPlay ON
CHANnel2:DISPlay ON,APPend

For a example of using multiple databases, refer to “multidatabase.c Sample
Program” on page 7-44.

Downloading a Database

The general process for downloading a color grade/gray scale database is as
follows:

1 Send the command :WAVEFORM:SOURCE CGRADE
This will select the color grade/gray scale database as the waveform source.

2 Issue :WAVeform:FORMat WORD.
Database downloads only support word formatted data (16-bit integers).

3 Send the query :WAVeform:DATA?
The data will be sent by means of a block data transfer as a two-dimensional
array, 450 words wide by 320 words high (refer to “Definite-Length Block
Response Data” on page 1-21). The data is transferred starting with the upper
left pixel of the display graticule, column by column, until the lower right pixel
is transferred.

4 Send the command :WAVeform:XORigin to obtain the time of the left column.
6-3

Using Multiple Databases
Auto Skew

book.book Page 4 Friday, July 12, 2002 1:51 PM
5 Send the command :WAVeform:XINC to obtain the time increment of each
column.

6 Send the command :WAVeform:YORigin to obtain the voltage or power of the
vertical center of the database.

7 Send the command :WAVeform:YORigin to obtain the voltage or power of the
incremental row.

The information from steps 4 through 7 can also be obtained with the com-
mand :WAVeform:PREamble.

Auto Skew

Another multiple database feature is the auto skew . You can use the auto
skew feature to lset the horizontal skew of multiple, active channels with the
same bit rate, so that the waveform crossings align with each other. This can
be very convient when viewing multiple eye diagrams simultaneously. Slight
differences between channels and test devices may cause a phase difference
between channels. Auto skew ensures that each eye is properly aligned, so
that measurements and mask tests can be properly executed.

In addition, auto skew optimizes the instrument trigger level. Prior to auto
skew, at least one channel must display a complete eye diagram in order to
make the initial bit rate measurement.

Acquisition Time

Auto skew requires more data to be sampled; therefore, acquisition time during auto
skew is slightly longer than acquisition time during measurements.
6-4

book.book Page 1 Friday, July 12, 2002 1:51 PM
7

Sample Program Structure 7-3
Sample C Programs 7-4

init.c - Initialization 7-5
init.c - Global Definitions and Main Program 7-6
init.c - Initializing the Analyzer 7-7
init.c - Acquiring Data 7-8
init.c - Making Automatic Measurements 7-9
init.c - Error Checking 7-11
init.c - Transferring Data to the PC 7-13
init.c - Converting Waveform Data 7-15
init.c - Storing Waveform Time and Voltage Information 7-16
gen_srq.c - Generating a Service Request 7-17

Initializing the Analyzer 7-18
Setting Up a Service Request 7-19
Generating a Service Request 7-20

Listings of the Sample Programs 7-21
hpib_decl.h Sample Program 7-22
init.c Sample Program 7-24
gen_srq.c Sample Program 7-30
srq.c Sample Program 7-32
learnstr.c Sample Program 7-34
sicl_IO.c Sample Program 7-37
natl_IO.c Sample Program 7-40
multidatabase.c Sample Program 7-44
init.bas Sample Program 7-48
srq.bas Sample Program 7-54
lrn_str.bas Sample Program 7-57
Sample Programs

Sample Programs
Sample Programs

book.book Page 2 Friday, July 12, 2002 1:51 PM
Sample Programs

Sample programs for the Agilent 86100 analyzers are shipped on a disk with
the instrument. Each program demonstrates specific sets of instructions. This
chapter shows you some of those functions, and describes the commands
being executed. Both C and HP BASIC examples are included.

The header file is:

• hpibdecl.h

The C examples include:

• init.c
• gen_srq.c
• srq.c
• learnstr.c
• sicl_IO.c
• natl_IO.c
• multidatabase.c

The HP BASIC examples include:

• init.bas
• srq.bas
• lrn_str.bas

The sample program listings are included at the end of this chapter.
7-2

Sample Programs
Sample Program Structure

book.book Page 3 Friday, July 12, 2002 1:51 PM
Sample Program Structure

This chapter includes segments of both the C and HP BASIC sample pro-
grams. Each program includes the basic functions of initializing the interface
and analyzer, capturing the data, and analyzing the data.

In general, both the C and HP BASIC sample programs typically contain the
following fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files, and
calls various functions.

initialize Initializes the GPIB and analyzer, and sets up the analyzer and the
ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.

auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the preamble)
into the computer.
7-3

Sample Programs
Sample C Programs

book.book Page 4 Friday, July 12, 2002 1:51 PM
Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and
described in this chapter.
7-4

Sample Programs
init.c - Initialization

book.book Page 5 Friday, July 12, 2002 1:51 PM
init.c - Initialization

/* init. c */

/* Command Order Example. This program demonstrates the order of commands suggested for operation of the analyzer via GPIB.
This program initializes the scope, acquires data, performs automatic measurements, and transfers and stores the data on the PC
as time/voltage pairs in a comma-separated file format useful for spreadsheet applications. It assumes a SICL INTERFACE exists
as 'hpib7' and an Agilent 86100 analyzer at address 7. It also requires the cal signal attached to Channel 1.

See the README file on the demo disk for development and linking information.
*/

include <stdio.h> /* location of: printf () */
include <stdlib.h> /* location of: atof(), atoi () */
include "hpibdecl.h" /* prototypes, global declarations, constants */

void initialize (); /* initialize the scope */
void acquire_data (); /* digitize signal */
void auto_measurements (); /* perform built-in automatic measurements */
void transfer_data (); /* transfers waveform data from scope to PC */
void convert_data (); /* converts data to time/voltage values */
void store_csv (); /* stores time/voltage pairs to comma-separated

/* variable file format */

The include statements start the program. The file “hpibdecl.h” includes pro-
totypes and declarations that are necessary for the analyzer sample programs.

This segment of the sample program defines the functions, in order, that are
used to initialize the scope, digitize the data, perform measurements, transfer
data from the scope to the PC, convert the digitized data to time and voltage
pairs, and store the converted data in comma-separated variable file format.

See the following descriptions of the program segments.
7-5

Sample Programs
init.c - Global Definitions and Main Program

book.book Page 6 Friday, July 12, 2002 1:51 PM
init.c - Global Definitions and Main Program

/* GLOBALS */
int count;
double xorg,xref,xinc; /* values necessary for conversion of data */
double yorg,yref,yinc;
int Acquired_length;
char data[MAX_LENGTH]; /* data buffer */
double time_value[MAX_LENGTH]; /* time value of data */
double volts[MAX_LENGTH]; /* voltage value of data */

void main(void)
{
/* initialize interface and device sessions */
/* note: routine found in sicl_IO.c or natl_IO.c */

init_IO ();

initialize (); /* initialize the scope and interface and set up SRQ */
acquire_data (); /* capture the data */
auto_measurements (); /* perform automated measurements on acquired data */
transfer_data (); /* transfer waveform data to the PC from scope */
convert_data (); /* convert data to time/voltage pairs */
store_csv (); /* store the time/voltage pairs as csv file */
close_IO (); /* close interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */
} /* end main () */

The init_IO routine initializes the analyzer and interface so that the scope can
capture data and perform measurements on the data. At the start of the pro-
gram, global symbols are defined which will be used to store and convert the
digitized data to time and voltage values.
7-6

Sample Programs
init.c - Initializing the Analyzer

book.book Page 7 Friday, July 12, 2002 1:51 PM
init.c - Initializing the Analyzer

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The analyzer time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/
void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, */
 /* 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */
7-7

Sample Programs
init.c - Acquiring Data

book.book Page 8 Friday, July 12, 2002 1:51 PM
init.c - Acquiring Data

/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current
* instrument settings.
*/
void acquire_data ()
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data when averaging is used. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped. The
* captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO (":DIGitize CHANnel1");
 write_IO (":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is */

/* turned off by the :DIGitize command */

} /* end acquire_data () */
7-8

Sample Programs
init.c - Making Automatic Measurements

book.book Page 9 Friday, July 12, 2002 1:51 PM
init.c - Making Automatic Measurements

/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and period on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements ()
{
float period, vpp;
unsigned char vpp_str[16];
unsigned char period_str[16];
int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.
*
* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.
*/
/*
* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/
write_IO (":MEASure:SEND ON"); /* turn results on */
write_IO (":MEASure:VPP? CHANnel1"); /* query -- volts peak-to-peak channel 1*/

bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n",

 vpp_str [bytes_read-2]);
else
 printf ("VPP is %f\n", (float) atof (vpp_str));

write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */

bytes_read = read_IO (period_str,16L); /* read in value and result flag */

if period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n",
7-9

Sample Programs
init.c - Making Automatic Measurements

book.book Page 10 Friday, July 12, 2002 1:51 PM
 period_str [bytes_read-2]);
else
 printf ("Period is %f\n",(float)atof (period_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF
*/
period = (float) 0;
vpp = (float) 0;

/* turn off results */
write_IO (":MEASure:SEND OFF");

write_IO (":MEASure:PERiod? CHANnel1"); /*period 1 */
bytes_read = read_IO (period_str,16L); /* read in value and result flag */

period = (float) atof (period_str);

if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

write_IO (":MEASure:VPP? CHANnel1");
bytes_read = read_IO (vpp_str,16L);

vpp = (float) atof (vpp_str);

if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements () */
7-10

Sample Programs
init.c - Error Checking

book.book Page 11 Friday, July 12, 2002 1:51 PM
init.c - Error Checking

/* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.

* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.

* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/

 write_IO (":MEASure:SEND ON"); /* turn results on */

 /* query -- volts peak-to-peak channel 1*/
 write_IO (":MEASure:VPP? CHANnel1");

 bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n",
 vpp_str[bytes_read-2]);
 else
 printf ("VPP is %f\n",(float)atof(vpp_str));

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO(period_str,16L); /* read in value and result flag */

 if period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n",
 period_str[bytes_read-2]);
 else
 printf ("Period is %f\n",(float)atof (period_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF.
*/
period = (float) 0;
vpp = (float) 0;

 /* turn off results */
 write_IO (":MEASure:SEND OFF");

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */
7-11

Sample Programs
init.c - Error Checking

book.book Page 12 Friday, July 12, 2002 1:51 PM
 period = (float) atof (period_str);

 if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
 else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

 write_IO (":MEASure:VPP? CHANnel1");
 bytes_read = read_IO (vpp_str,16L);

 vpp = (float) atof (vpp_str);

 if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
 else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements() */
7-12

Sample Programs
init.c - Transferring Data to the PC

book.book Page 13 Friday, July 12, 2002 1:51 PM
init.c - Transferring Data to the PC

/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and
* waveform data to the PC.
*/

void transfer_data ()
{

 int header_length;
 char header_str[8];
 char term;

 char xinc_str[32],xorg_str[32],xref_str[32];
 char yinc_str[32],yref_str[32],yorg_str[32];

 int bytes_read;

 /* waveform data source channel 1 */
 write_IO (":WAVeform:SOURce CHANnel1");
 /* setup transfer format */
 write_IO (":WAVeform:FORMat BYTE");
 /* request values to allow interpretation of raw data */
 write_IO (":WAVeform:XINCrement?");
 bytes_read = read_IO (xinc_str,32L);
 xinc = atof (xinc_str);

 write_IO (":WAVeform:XORigin?");
 bytes_read = read_IO (xorg_str,32L);
 xorg = atof (xorg_str);

 write_IO (":WAVeform:XREFerence?");
 bytes_read = read_IO (xref_str,32L);
 xref = atof (xref_str);

 write_IO (":WAVeform:YINCrement?");
 bytes_read = read_IO (yinc_str,32L);
 yinc = atof (yinc_str);

 write_IO (":WAVeform:YORigin?");
 bytes_read = read_IO (yorg_str,32L);
 yorg = atof (yorg_str);

 write_IO (":WAVeform:YREFerence?");
 bytes_read = read_IO (yref_str,32L);
 yref = atof (yref_str);

 write_IO (":WAVeform:DATA?"); /* request waveform data */
 while (data[0] != ‘#’)
 bytes_read = read_IO (data,1L); /* find the # character */
 bytes_read = read_IO (header_str,1L); /* input byte counter */
7-13

Sample Programs
init.c - Transferring Data to the PC

book.book Page 14 Friday, July 12, 2002 1:51 PM
 header_length = atoi (header_str);

 /* read number of points - value in bytes */
 bytes_read = read_IO (header_str,(long)header_length);

 Acquired_length = atoi (header_str); /* number of bytes */

 bytes_read = read_IO (data,Acquired_length); /* input waveform data */
 bytes_read = read_IO (&term,1L); /* input termination character */

} /* end transfer_data () */

An example header resembles the following when the information is stripped
off:

#510225

The left-most “5” defines the number of digits that follow (10225). The num-
ber “10225” is the number of points in the waveform. The information is
stripped off of the header to get the number of data bytes that need to be read
from the analyzer.
7-14

Sample Programs
init.c - Converting Waveform Data

book.book Page 15 Friday, July 12, 2002 1:51 PM
init.c - Converting Waveform Data

/*
* Function name: convert_data
* Parameters: none
* Return value: none
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

void convert_data ()
{

 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 time_value[i] = ((i - xref) * xinc) + xorg;/* calculate time info */
 volts[i] = ((data[i] - yref) * yinc) + yorg;/* calculate volt info */
 }

} /* end convert_data () */

The data values are returned as digitized samples (sometimes called quantiza-
tion levels or q-levels). These data values must be converted into voltage and
time values.
7-15

Sample Programs
init.c - Storing Waveform Time and Voltage Information

book.book Page 16 Friday, July 12, 2002 1:51 PM
init.c - Storing Waveform Time and Voltage Information

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv ()
{

 FILE *fp;
 int i;

 fp = fopen ("pairs.csv","wb"); /* open file in binary mode - clear file */

/* if already exists */
 if (fp != NULL)
 {
 for (i = 0; i < Acquired_length; i++)
 {
 /* write time,volt pairs to file */

fprintf (fp,"%e,%lf\n",time_value[i],volts[i]);
 }
 fclose (fp); /* close file */
 }
 else
 printf ("Unable to open file 'pairs.csv'\n");

} /* end store_csv () */

The time and voltage information of the waveform is stored in integer format,
with the time stored first, followed by a comma, and the voltage stored sec-
ond.
7-16

Sample Programs
gen_srq.c - Generating a Service Request

book.book Page 17 Friday, July 12, 2002 1:51 PM
gen_srq.c - Generating a Service Request

Segments of the sample C program “gen_srq.c” show how to initialize the
interface and analyzer, and generate a service request.

Two include statements start the “gen_srq.c” program. The file “stdio.h”
defines the standard location of the printf routine, and is needed whenever
input or output functions are used. The file “hpibdecl.h” includes necessary
prototypes and declarations for the analyzers sample programs. The path of
these files must specify the disk drive and directory where the “include” files
reside.

/* gen_srq.c */

/*
* This example program initializes the Agilent 86100 scope, runs an autoscale,
* then generates and responds to a Service Request from the scope. The program
* assumes an Agilent 86100 at address 7, an interface card at interface select code 7,
* and a signal source attached to channel 1.
*/

#include <stdio.h> /* location of: printf () */
#include "hpibdecl.h"

void initialize ();
void setup_SRQ ();
void create_SRQ ();

void main (void)
{

 init_IO (); /* initialize interface and device sessions */
 initialize (); /* initialize the scope and interface */
 setup_SRQ (); /* enable SRQs on scope and set up SRQ handler */
 create_SRQ (); /* generate SRQ */
 close_IO (); /* close interface and device sessions */

} /* end main () */

The routine “init_IO” contains three subroutines that initialize the analyzer
and interface, and sets up and generate a service request.

The following segment describes the initialize subroutine.
7-17

Sample Programs
gen_srq.c - Generating a Service Request

book.book Page 18 Friday, July 12, 2002 1:51 PM
Initializing the Analyzer

The following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition
* of data. The instrument is reset to a known state and the interface is
* cleared. System headers are turned off to allow faster throughput and
* immediate access to the data values requested by queries. The analyzer
* performs an autoscale to acquire waveform data.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */
 write_IO (":SYSTem:HEADer OFF");/* turn off system headers */
 write_IO (":AUToscale"); /* perform autoscale */

} /* end initialize () */

The *RST command is a common command that resets the analyzer to a known
default configuration. Using this command ensures that the analyzer is in a
known state before you configure it. *RST ensures very consistent and repeat-
able results. Without *RST, a program may run one time, but it may give differ-
ent results in following runs if the analyzer is configured differently.

For example, if the trigger mode is normally set to edge, the program may
function properly. But, if someone puts the analyzer in the advanced TV trig-
ger mode from the front panel, the program may read measurement results
that are totally incorrect. So, *RST defaults the scope to a set configuration so
that the program can proceed from the same state each time.

The *CLS command clears the status registers and the output queue.

AUToscale finds and displays all signals that are attached to the analyzer. You
should program the analyzer’s time base, channel, and trigger for the specific
measurement to be made, as you would do from the front panel, and use what-
ever other commands are needed to configure the analyzer for the desired
measurement.
7-18

Sample Programs
gen_srq.c - Generating a Service Request

book.book Page 19 Friday, July 12, 2002 1:51 PM
Setting Up a Service Request

The following code segment shows how to generate a service request. The fol-
lowing function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: setup_SRQ
* Parameters: none
* Return value: none
* Description: This routine initializes the device to generate Service Requests. It
* sets the Service Request Enable Register Event Status Bit and the Standard
* Event Status Enable Register to allow SRQs on Command, Execution, Device
* Dependent, or Query errors.
*/
void setup_SRQ ()
{

 /* Enable Service Request Enable Register - Event Status Bit */

 write_IO ("*SRE 32"); /* Enable Standard Event Status Enable Register */
/* enable Command Error - bit 5 - value 32 */
/* Query Error - bit 2 - value 4 */

 write_IO ("*ESE 36");

} /* end setup_SRQ () */
7-19

Sample Programs
gen_srq.c - Generating a Service Request

book.book Page 20 Friday, July 12, 2002 1:51 PM
Generating a Service Request

The following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: create_SRQ
* Parameters: none
* Return value: none
* Description: This routine sends two illegal commands to the scope which will
* generate an SRQ and will place two error strings in the error queue. The scope
* ID is requested to allow time for the SRQ to be generated. The ID string
* will contain a leading character which is the response placed in the output
* queue by the interrupted query.
*/

void create_SRQ ()
{

 char buf [256] = { 0 }; //read buffer for id string
 int bytes_read = 0;
 int srq_asserted;

 /* Generate query error (interrupted query)*/
 /* send legal query followed by another command other than a read query response */
 write_IO (":CHANnel2:DISPlay?");
 write_IO (":CHANnel2:DISPlay OFF");

 /* Generate command error - send illegal header */
 write_IO (":CHANnel:DISPlay OFF");

 /* get instrument ID - allow time for SRQ to set */
 write_IO ("*IDN?");
 bytes_read = read_IO (buf,256L);

 /* add NULL to end of string */
 buf [bytes_read] = '\0';

 printf ("%s\n", buf);

 srq_asserted = check_SRQ ();

 if (srq_asserted)
 srq_handler ();

} /* end create_SRQ () */
7-20

Sample Programs
Listings of the Sample Programs

book.book Page 21 Friday, July 12, 2002 1:51 PM
Listings of the Sample Programs

Listings of the C sample programs in this section include:

• hpibdecl.h
• init.c
• gen_srq.c
• srq.c
• learnstr.c
• sicl_IO.c
• natl_IO.c

Listings of the HP BASIC sample programs in this section include:

• init.bas
• srq.bas
• lrn_str.bas
7-21

Sample Programs
hpib_decl.h Sample Program

book.book Page 22 Friday, July 12, 2002 1:51 PM
hpib_decl.h Sample Program

/* hpibdecl.h */

/*
* This file includes necessary prototypes and declarations for
* the example programs for the Agilent 86100*/
*/

/*
* User must indicate which GPIB card (HP or National) is being used.
* Also, if using a National card, indicate which version of windows
* (WIN31 or WIN95) is being used.
*/

#define HP /* Uncomment if using HP interface card */
/* #define NATL */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef HP
#include <sicl.h>
#else

 #ifdef WIN95
 #include <windows.h> /* include file for Windows 95 */
 #include <decl-32.h>
 #else
 #include <windecl.h> /* include file for Windows 3.1 */
 #endif

#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 14000
#define MAX_LENGTH 4096
#define MAX_INT 4192

#ifdef HP
#define DEVICE_ADDR "hpib7,7"
#define INTERFACE "hpib7"
#else
#define INTERFACE "hpib0"

#define board_index 0
#define prim_addr 7
#define second_addr 0
7-22

Sample Programs
hpib_decl.h Sample Program

book.book Page 23 Friday, July 12, 2002 1:51 PM
#define timeout 13
#define eoi_mode 1
#define eos_mode 0
#endif

#define TRUE 1
#define FALSE 0

/* GLOBALS */
#ifdef HP

 INST bus;
 INST scope;

#else
 int bus;
 int scope;

#endif

/* GPIB prototypes */
void init_IO ();
void write_IO (void*);
void write_lrnstr (void*, long);
int read_IO (void*, unsigned long);
int check_SRQ ();
unsigned char read_status ();
void close_IO ();
void hpiberr ();

void srq_handler ();
7-23

Sample Programs
init.c Sample Program

book.book Page 24 Friday, July 12, 2002 1:51 PM
init.c Sample Program

/* init. c */

/*
* Command Order Example. This program demonstrates the order of commands
* suggested for operation of the Agilent 86100 analyzer via GPIB.
* This program initializes the scope, acquires data, performs
* automatic measurements, and transfers and stores the data on the
* PC as time/voltage pairs in a comma-separated file format useful
* for spreadsheet applications. It assumes a SICL INTERFACE exists
* as 'gpib7' and an Agilent 86100 analyzer at address 7.
* It also requires the cal signal attached to Channel 1.
*
* See the README file on the demo disk for development and linking information.
*/

#include <stdio.h> /* location of: printf () */
#include <stdlib.h> /* location of: atof(), atoi () */
#include "hpibdecl.h" /* prototypes, global declarations, constants */

void initialize (); /* initialize the scope */
void acquire_data (); /* digitize signal */
void auto_measurements (); /* perform built-in automatic measurements */
void transfer_data (); /* transfers waveform data from scope to PC */
void convert_data (); /* converts data to time/voltage values */
void store_csv (); /* stores time/voltage pairs to comma-separated variable file format */

/* GLOBALS */
int count;
double xorg,xref,xinc; /* values necessary for conversion of data */
double yorg,yref,yinc;
int Acquired_length;
char data [MAX_LENGTH]; /* data buffer */
double time_value [MAX_LENGTH];/* time value of data */
double volts [MAX_LENGTH]; /* voltage value of data */

void main(void)
{

 /* initialize interface and device sessions */
 /* note: routine found in sicl_IO.c or natl_IO.c */
 init_IO ();

 initialize (); /* initialize the scope and interface and set up SRQ */
 acquire_data (); /* capture the data */
 auto_measurements (); /* perform automated measurements on acquired data */
 transfer_data (); /* transfer waveform data to the PC from scope */
 convert_data (); /* convert data to time/voltage pairs */
 store_csv (); /* store the time/voltage pairs as csv file */
 close_IO (); /* close interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */
} /* end main () */
7-24

Sample Programs
init.c Sample Program

book.book Page 25 Friday, July 12, 2002 1:51 PM
/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The analyzer time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */

/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current instrument settings.
*/
void acquire_data ()
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped.
7-25

Sample Programs
init.c Sample Program

book.book Page 26 Friday, July 12, 2002 1:51 PM
* The captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO (":DIGitize CHANnel1");
 write_IO (":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is turned off by the :DIGitize command */

} /* end acquire_data() */

/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and period on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements ()
{

 float period, vpp;
 unsigned char vpp_str[16];
 unsigned char period_str[16];
 int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.

* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.

* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/

 write_IO (":MEASure:SEND ON"); /* turn results on */

 /* query -- volts peak-to-peak channel 1*/
 write_IO (":MEASure:VPP? CHANnel1");

 bytes_read = read_IO (vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n", vpp_str[bytes_read-2]);
 else
 printf ("VPP is %f\n", (float)atof (vpp_str));
7-26

Sample Programs
init.c Sample Program

book.book Page 27 Friday, July 12, 2002 1:51 PM
 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */

 if (period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n", period_str [bytes_read-2]);
 else
 printf ("Period is %f\n", (float) atof (period_str));

/* METHOD TWO - perform automated measurements and error checking with :MEAS:SEND OFF */

 period = (float) 0;
 vpp = (float) 0;

 /* turn off results */
 write_IO (":MEASure:SEND OFF");

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */

 period = (float) atof (period_str);

 if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
 else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

 write_IO (":MEASure:VPP? CHANnel1");
 bytes_read = read_IO (vpp_str,16L);

 vpp = (float) atof (vpp_str);

 if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
 else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements () */

/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and waveform data to the PC.
*/

void transfer_data ()
{

 int header_length;
 char header_str[8];
 char term;

 char xinc_str[32],xorg_str[32],xref_str[32];
 char yinc_str[32],yref_str[32],yorg_str[32];

7-27

Sample Programs
init.c Sample Program

book.book Page 28 Friday, July 12, 2002 1:51 PM
 int bytes_read;

 /* waveform data source channel 1 */
 write_IO (":WAVeform:SOURce CHANnel1");
 /* setup transfer format */
 write_IO (":WAVeform:FORMat BYTE");
/* request values to allow interpretation of raw data */
 write_IO (":WAVeform:XINCrement?");
 bytes_read = read_IO (xinc_str,32L);
 xinc = atof (xinc_str);

 write_IO (":WAVeform:XORigin?");
 bytes_read = read_IO (xorg_str,32L);
 xorg = atof (xorg_str);

 write_IO (":WAVeform:XREFerence?");
 bytes_read = read_IO (xref_str,32L);
 xref = atof (xref_str);

 write_IO (":WAVeform:YINCrement?");
 bytes_read = read_IO (yinc_str,32L);
 yinc = atof (yinc_str);

 write_IO (":WAVeform:YORigin?");
 bytes_read = read_IO (yorg_str,32L);
 yorg = atof (yorg_str);

 write_IO (":WAVeform:YREFerence?");
 bytes_read = read_IO (yref_str,32L);
 yref = atof (yref_str);

 write_IO (":WAVeform:DATA?"); /* request waveform data */
 bytes_read = read_IO (data,1L); /* ignore leading # */
 bytes_read = read_IO (header_str,1L); /* input byte counter */
 header_length = atoi (header_str);

 /* read number of points - value in bytes */
 bytes_read = read_IO (header_str,(long)header_length);

 Acquired_length = atoi (header_str); /* number of bytes */

 bytes_read = read_IO (data,Acquired_length); /* input waveform data */
 bytes_read = read_IO (&term,1L); /* input termination character */

} /* end transfer_data () */

/*
* Function name: convert_data
* Parameters: none
* Return value: none
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

void convert_data ()
7-28

Sample Programs
init.c Sample Program

book.book Page 29 Friday, July 12, 2002 1:51 PM
{
 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 time_value[i] = ((i - xref) * xinc) + xorg; /* calculate time info */
 volts[i] = ((data[i] - yref) * yinc) + yorg; /* calculate volt info */
 }

} /* end convert_data () */

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv ()
{

 FILE *fp;
 int i;

 fp = fopen ("pairs.csv","wb"); /* open file in binary mode - clear file if already exists */
 if (fp != NULL)
 {
 for (i = 0; i < Acquired_length; i++)
 {
 /* write time,volt pairs to file */
 fprintf (fp,"%e,%lf\n",time_value[i],volts[i]);

 }
 fclose (fp); /* close file */
 }
 else
 printf ("Unable to open file 'pairs.csv'\n");

} /* end store_csv () */
7-29

Sample Programs
gen_srq.c Sample Program

book.book Page 30 Friday, July 12, 2002 1:51 PM
gen_srq.c Sample Program

/* gen_srq.c */

/*
* This example programs initializes the Agilent 86100 scope, runs an
* autoscale, then generates and responds to a Service Request from the
* scope. The program assumes an Agilent 86100 at address 7, an interface card
* at interface select code 7, and a signal source attached to channel 1.
*/

#include <stdio.h> /* location of: printf () */
#include "hpibdecl.h"

void initialize ();
void setup_SRQ ();
void create_SRQ ();

void main (void)
{

 init_IO (); /* initialize interface and device sessions */
 initialize (); /* initialize the scope and interface */
 setup_SRQ (); /* enable SRQs on scope and set up SRQ handler */
 create_SRQ (); /* generate SRQ */
 close_IO (); /* close interface and device sessions */

} /* end main () */

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition of data.
* The instrument is reset to a known state and the interface is cleared.
* System headers are turned off to allow faster throughput and immediate access
* to the data values requested by queries. The analyzer performs an autoscale to acquire waveform data.
*/
void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */
 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */
 write_IO (":AUToscale"); /* perform autoscale */

} /* end initialize () */

/*
* Function name: setup_SRQ
* Parameters: none
* Return value: none
* Description: This routine initializes the device to generate Service
* Requests. It sets the Service Request Enable Register Event Status Bit
* and the Standard Event Status Enable Register to allow SRQs on Command
* or Query errors.
7-30

Sample Programs
gen_srq.c Sample Program

book.book Page 31 Friday, July 12, 2002 1:51 PM
*/

void setup_SRQ ()
{

 /* Enable Service Request Enable Register - Event Status Bit */
 write_IO ("*SRE 32");

 /* Enable Standard Event Status Enable Register enable Command Error - bit 4 - value 32 Query Error - bit 1 - value 4 */
 write_IO ("*ESE 36");

} /* end setup_SRQ () */

/*
* Function name: create_SRQ
* Parameters: none
* Return value: none
* Description: This routine sends two illegal commands to the scope which will generate an
* SRQ and will place two error strings in the error queue. The scope ID is requested to allow
* time for the SRQ to be generated. The ID string will contain a leading character which
* is the response placed in the output queue by the interrupted query.
*/
void create_SRQ ()
{

 char buf [256] = { 0 }; //read buffer for id string
 int bytes_read = 0;
 int srq_asserted;

 /* Generate query error (interrupted query)*/
 /* send legal query followed by another command other than a read query response */
 write_IO (":CHANnel2:DISPlay?");

 write_IO (":CHANnel2:DISPlay OFF");

 /* Generate command error - send illegal header */
 write_IO (":CHANnel:DISPlay OFF");

 /* get instrument ID - allow time for SRQ to set */
 write_IO ("*IDN?");
 bytes_read = read_IO (buf,256L);

 /* add NULL to end of string */
 buf [bytes_read] = '\0';

 printf ("%s\n", buf);
 srq_asserted = check_SRQ ();
 if (srq_asserted)
 srq_handler ();

} /* end create_SRQ () */
7-31

Sample Programs
srq.c Sample Program

book.book Page 32 Friday, July 12, 2002 1:51 PM
srq.c Sample Program

/* file: srq.c */

/* This file contains the code to handle Service Requests from an GPIB device */

#include <stdio.h> /* location of printf (), fopen (), and fclose () */
#include "hpibdecl.h"

/*
* Function name: srq_handler
* Parameters: none
* Return value: none
* Description: This routine services the scope when an SRQ is generated.
* An error file is opened to receive error data from the scope.
*/

void srq_handler ()
{
 FILE *fp;
 unsigned char statusbyte = 0;
 int i =0;
 int more_errors = 0;
 char error_str[64] ={0};
 int bytes_read;
 int srq_asserted = TRUE;

 srq_asserted = check_SRQ ();

 while (srq_asserted)
 {
 statusbyte = read_status ();

 if (statusbyte & SRQ_BIT)
 {
 fp = fopen ("error_list","wb"); /* open error file */
 if (fp == NULL)
 printf ("Error file could not be opened.\n");
/* read error queue until no more errors */
 more_errors = TRUE;
 while (more_errors)
 {
 write_IO (":SYSTEM:ERROR? STRING");
 bytes_read = read_IO (error_str, 64L);

 error_str[bytes_read] = '\0';

 /* write error msg to std IO */
 printf ("Error string:%s\n", error_str);

 if (fp != NULL)
 /* write error msg to file*/
 fprintf (fp,"Error string:%s\n", error_str);
7-32

Sample Programs
srq.c Sample Program

book.book Page 33 Friday, July 12, 2002 1:51 PM
 if (error_str[0] == '0')
 {
 /* Clear event registers and queues,except output */
 write_IO("*CLS");

 more_errors = FALSE;

 if (fp != NULL)
 fclose (fp);
 }
 for (i=0;i<64;i++) /* clear string */
 error_str[i] = '\0';

 } /* end while (more_errors) */
 }
 else
 {
 printf (" SRQ not generated by scope.\n "); /* scope did not cause SRQ */
 }
 srq_asserted = check_SRQ (); /* check for SRQ line status */

 }/* end while (srq_asserted) */

}/* end srq_handler */
7-33

Sample Programs
learnstr.c Sample Program

book.book Page 34 Friday, July 12, 2002 1:51 PM
learnstr.c Sample Program

/* learnstr.c */

/*
* This example program initializes the Agilent 86100 scope, runs autoscale to
* acquire a signal, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the
* original learnstring. It assumes that a signal is attached to the scope.
*/

#include <stdio.h> /* location of: printf (), fopen (), fclose (), fwrite (),getchar */
#include "hpibdecl.h"

void initialize ();
void store_learnstring ();
void change_setup ();
void get_learnstring ();

void main (void)
{

 init_IO (); /* initialize device and interface */
/* Note: routine found in sicl_IO.c or natl_IO.c */

 initialize (); /* initialize the scope and interface, and set up SRQ */
 store_learnstring (); /* request learnstring and store */
 change_setup (); /* request user to change setup */
 get_learnstring (); /* restore learnstring */
 close_IO (); /* close device and interface sessions */

/* Note: routine found in sicl_IO.c or natl_IO.c */

} /* end main */
/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition of data.
* The instrument is reset to a known state and the interface is cleared.
* System headers are turned off to allow faster throughput and immediate access to the data values requested by queries.
* Autoscale is performed to acquire a waveform. The signal is then
* digitized, and the channel display is turned on following the acquisition.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer ON");/* turn on system headers */

 /* initialize Timebase parameters to center reference, 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");
7-34

Sample Programs
learnstr.c Sample Program

book.book Page 35 Friday, July 12, 2002 1:51 PM
 /* initialize Channel1 1.6v full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */

/*
* Function name: store_learnstring
* Parameters: none
* Return value: none
* Description: This routine requests the system setup known as a learnstring.
* The learnstring is read from the scope and stored in a file called Learn2.
*/

void store_learnstring ()
{

 FILE *fp;
 unsigned char setup[MAX_LRNSTR] ={0};
 int actualcnt = 0;

 write_IO (":SYSTem:SETup?"); /* request learnstring */
 actualcnt = read_IO (setup, MAX_LRNSTR);

 fp = fopen ("learn2","wb");

 if (fp != NULL)
 {
 fwrite (setup,sizeof (unsigned char), (int) actualcnt,fp);
 printf ("Learn string stored in file Learn2\n");

 fclose (fp);
 }
 else
 printf ("Error in file open\n");

}/* end store_learnstring */

/*
* Function name: change_setup
* Parameters: none
* Return value: none
* Description: This routine places the scope into local mode to allow the customer to change the system setup.
*/

void change_setup ()
{
7-35

Sample Programs
learnstr.c Sample Program

book.book Page 36 Friday, July 12, 2002 1:51 PM
 printf ("Please adjust setup and press ENTER to continue.\n");
 getchar();

} /* end change_setup */

/*
* Function name: get_learnstring
* Parameters: none
* Return value: none
* Description: This routine retrieves the system setup known as a
* learnstring from a disk file called Learn2. It then restores the system setup to the scope.
*/

void get_learnstring ()
{

 FILE *fp;
 unsigned char setup[MAX_LRNSTR];
 unsigned long count = 0;

 fp = fopen ("learn2","rb");

 if (fp != NULL)
 {
 count = fread (setup,sizeof(unsigned char),MAX_LRNSTR,fp);

 fclose (fp);
 }
 write_lrnstr (setup,count); /* send learnstring */
 write_IO (":RUN");

}/* end get_learnstring */
7-36

Sample Programs
sicl_IO.c Sample Program

book.book Page 37 Friday, July 12, 2002 1:51 PM
sicl_IO.c Sample Program

/* sicl_IO.c */

#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen () */
#include "hpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */
/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* values, clears the interface by pulsing IFC, and clears the instrument
* by performing a Selected Device Clear.
*/

void init_IO ()
{

 ionerror (I_ERROR_EXIT); /* set-up interface error handling */

 /* open interface session for verifying SRQ line */
 bus = iopen (INTERFACE);
 if (bus == 0)
 printf ("Bus session invalid\n");

 itimeout (bus, 20000); /* set bus timeout to 20 sec */
 iclear (bus); /* clear the interface - pulse IFC */

 scope = iopen (DEVICE_ADDR); /* open the scope device session */
 if (scope == 0)
 printf ("Scope session invalid\n");

 itimeout (scope, 20000); /* set device timeout to 20 sec */
 iclear (scope); /* perform Selected Device Clear on scope */

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs strings to the scope device session
* using the unformatted I/O SICL commands.
*/
7-37

Sample Programs
sicl_IO.c Sample Program

book.book Page 38 Friday, July 12, 2002 1:51 PM
void write_IO (void *buffer)
{
 unsigned long actualcnt;
 unsigned long length;
 int send_end = 1;
 length = strlen (buffer);
 iwrite (scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*
* Function name: write_lrnstr
* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the scope device
* session using the unformatted I/O SICL commands.
*/

void write_lrnstr (void *buffer, long length)
{

 unsigned long actualcnt;
 int send_end = 1;

 iwrite (scope, buffer, (unsigned long) length,
 send_end, &actualcnt);

} /* end write_lrnstr () */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session using SICL commands.
*/

int read_IO (void *buffer,unsigned long length)
{

 int reason;
 unsigned long actualcnt;

 iread (scope,buffer,length,&reason,&actualcnt);

 return((int) actualcnt);
}

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and returns a value to indicate the status.
*/
7-38

Sample Programs
sicl_IO.c Sample Program

book.book Page 39 Friday, July 12, 2002 1:51 PM
int check_SRQ()
{

 int srq_asserted;

 /* check for SRQ line status */
 ihpibbusstatus(bus, I_HPIB_BUS_SRQ, &srq_asserted);

 return (srq_asserted);

} /* end check_SRQ () */

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the scope status byte and returns the status.
*/

unsigned char read_status ()
{

 unsigned char statusbyte;

 /* Always read the status byte from instrument */
 /* NOTE: ireadstb uses serial poll to read status byte - this should clear bit 6 to allow another SRQ. */

 ireadstb (scope, &statusbyte);
 return (statusbyte);

} /* end read_status () */

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for the
* SICL environment and calls the routine _siclcleanup which de-allocates
* resources used by the SICL environment.
*/

void close_IO ()
{

 iclose (scope); /* close device session */
 iclose (bus); /* close interface session */

 _siclcleanup (); /* required for 16-bit applications */

} /* end close_SICL () */
7-39

Sample Programs
natl_IO.c Sample Program

book.book Page 40 Friday, July 12, 2002 1:51 PM
natl_IO.c Sample Program

/* natl_IO.c */

#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen () */
#include "hpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*
* Function name: hpiberr
* Parameters: char* - string describing error
* Return value: none
* Description: This routine outputs error descriptions to an error file.
*/

void hpiberr(char *buffer)
{

 printf ("Error string: %s\n",buffer);

} /* end hpiberr () */

/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the NI environment. It sets up error
* handling, opens both an interface and device session, sets timeout values
* clears the interface by pulsing IFC, and clears the instrument by performing
* a Selected Device Clear.
*/

void init_IO ()
{

 bus = ibfind (INTERFACE); /* open and initialize GPIB board */
 if (ibsta & ERR)
 hpiberr ("ibfind error");

 ibconfig (bus, IbcAUTOPOLL, 0); /* turn off autopolling */

 ibsic (bus); /* clear interface - pulse IFC */
 if (ibsta & ERR)
 {
 hpiberr ("ibsic error");
 }

 /* open device session */
 scope = ibdev (board_index, prim_addr, second_addr, timeout,
 eoi_mode, eos_mode);
 if (ibsta & ERR)
 {
 hpiberr ("ibdev error");
 }
7-40

Sample Programs
natl_IO.c Sample Program

book.book Page 41 Friday, July 12, 2002 1:51 PM
 ibclr (scope); /* clear the device(scope) */

 if (ibsta & ERR)
 {
 hpiberr ("ibclr error");
 }

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: void *buffer which is a pointer to the character string to be output
* Return value: none
* Description: This routine outputs strings to the scope device session.
*/
void write_IO (void *buffer)
{

 long length;

 length = strlen (buffer);

 ibwrt (scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 hpiberr ("ibwrt error");
 }

} /* end write_IO() */

/*
* Function name: write_lrnstr
* Parameters: void *buffer which is a pointer to the character string to
* be output; length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the scope device session.
*/
void write_lrnstr (void *buffer, long length)
{

 ibwrt (scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 hpiberr ("ibwrt error");
 }

} /* end write_lrnstr () */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be input;
* unsigned long length which indicates the max length of the string to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session.
*/
7-41

Sample Programs
natl_IO.c Sample Program

book.book Page 42 Friday, July 12, 2002 1:51 PM
int read_IO (void *buffer,unsigned long length)
{
 ibrd (scope, buffer, (long) length);

 return (ibcntl);

} /* end read_IO () */

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*/

int check_SRQ ()
{

 int srq_asserted;
 short control_lines = 0;

 iblines (bus, &control_lines);

 if (control_lines & BusSRQ)
 srq_asserted = TRUE;
 else
 srq_asserted = FALSE;

 return (srq_asserted);

} /* end check_SRQ () */

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the scope status byte and returns the status.
*/
unsigned char read_status ()
{

 unsigned char statusbyte;

 /* Always read the status byte from instrument */

 ibrsp (scope, &statusbyte);

 return (statusbyte);

} /* end read_status () */
7-42

Sample Programs
natl_IO.c Sample Program

book.book Page 43 Friday, July 12, 2002 1:51 PM
/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device session.
*/

void close_IO ()
{

 ibonl (scope,0); /* close device session */

} /* end close_IO () */
7-43

Sample Programs
multidatabase.c Sample Program

book.book Page 44 Friday, July 12, 2002 1:51 PM
multidatabase.c Sample Program

/*multidatabase.c*/

/*
* This example program demonstrates the use of the Multidatabase functionality of the
* Agilent 86100 DCA. The program sets up an acquitision of 200 waveforms on two
* channels, first serially, then in parallel. A mask test and simple
* measurements are made on each channel. NOTE: the timeout value must
* be set to a higher value (~30s) so that there is enough time to acquire the
* data.
*/

#include <stdio.h>//standard c++ io funcitons
#include <time.h>//time funcitons

//GPIB prototypes (from IO file)
void init_IO ();
void write_IO (char*);
int read_IO (char*, unsigned long);
void close_IO ();

//prototypes
void initialize();
int acquire_serial();
int acquire_parallel();

void main()
{

int serialTime, parallelTime; //declarations
init_IO(); //initial the interface and open GPIB communications
initialize(); //set up the instrument
serialTime = acquire_serial();//acquire the data in serial
parallelTime = acquire_parallel();//acquire the data in parallel
close_IO(); //close GPIB communications

printf("\nSerial Acquisition Time: %d ms\nParallel Acquisition Time: %d ms\n",
serialTime, parallelTime);//display acquisition times

printf("Time Savings: %d ms\n", serialTime-parallelTime);
//display the time savings

}//main()

/*
* Function Name: initialize
* Paramters: none
* Returned value: none
* Description: This method sets up the channels and acquisition limits of the
* DCA
*/

void initialize()
{

write_IO("*RST");//reset the DCA
7-44

Sample Programs
multidatabase.c Sample Program

book.book Page 45 Friday, July 12, 2002 1:51 PM
write_IO("*CLS");//clear the status registers
write_IO("SYSTem:MODE EYE");//switch to Eye/mask mode

write_IO("STOP");//stop acquistion
write_IO("CDISplay");//clear the display

write_IO("ACQuire:RUNTil WAVeforms,200");
//set the acquistion limit to 200 waveforms

write_IO("CHANnel1:FSELect 1");//choose filter #1 on channel 1
write_IO("CHANnel1:FILTer ON");//turn on the filter

write_IO("CHANnel3:FSELect 1");//choose filter #1 on channel 3
write_IO("CHANnel3:FILTer ON");//turn on the filter

}//initialize()

/*
* Funciton Name: acquireSerial
* Parameters: none
* Returned value: int - the time to acquire the data
* Description: This routine turns on channel 1, performs an autoscale, acquires
* 200 waveforms, performs a mask test, and then performs the measurements. The
* process is then repeated for channel 2.
*/

int acquire_serial()
{

printf("Serial Acquisition in progress\n");//status report

//decalrations
int start=clock(),stop;
char Msk_hits1[16],Crss_pct1[16],Ext_rat1[16],buff[32];
char Msk_hits2[16],Crss_pct2[16],Ext_rat2[16];

write_IO("CHANnel1:DISPlay ON");//turn on channel one
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale
write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:LOAD \"STM016_OC48.msk\"");//load OC-48 mask
write_IO("MTESt:START"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits1[read_IO(Msk_hits1, 15)]=0;//get the number of mask hits
write_IO("MTESt:TEST OFF"); //trun off the maks test

write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct1[read_IO(Crss_pct1,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat1[read_IO(Ext_rat1,15)]=0;//get the extinction ratio

write_IO("CHANnel3:DISPlay ON");//turn on channel three
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale
7-45

Sample Programs
multidatabase.c Sample Program

book.book Page 46 Friday, July 12, 2002 1:51 PM
write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:TEST ON"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits2[read_IO(Msk_hits2, 15)]=0;//get the number of mask hits

write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct2[read_IO(Crss_pct2,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat2[read_IO(Ext_rat2,15)]=0;//get the extinction ratio

stop = clock();

//display the results
printf("Channel 1:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits1,Crss_pct1,Ext_rat1);
printf("Channel 3:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits2,Crss_pct2,Ext_rat2);

return (stop-start);
}//acquireSerial()

/*
* Funciton Name: acquireParallel
* Parameters: none
* Returned value: int - the time to acquire the data
* Description: This routine is identical to acquireSerial, except that the data
* is aquired at the same time.
*/

int acquire_parallel()
{

printf("Parallel Acquisition In progress\n");//status report

//decalrations
int start=clock(),stop;
char Msk_hits1[16],Crss_pct1[16],Ext_rat1[16],buff[32];
char Msk_hits2[16],Crss_pct2[16],Ext_rat2[16];

write_IO("CHANnel1:DISPlay ON");//turn on channel one
write_IO("CHANnel3:DISPlay ON, APPEnd");//turn on channel three
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale
write_IO("CALibrate:SKEW:AUTO");//auto deskew the two channels
write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:LOAD \"STM016_OC48.msk\"");//load OC-48 mask
write_IO("MTESt:SOURce CHANnel1");//set mask test channel1
write_IO("MTESt:START"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits1[read_IO(Msk_hits1, 15)]=0;//get the number of mask hits

write_IO("MTESt:SOURce CHANnel3");//mask test channel3
7-46

Sample Programs
multidatabase.c Sample Program

book.book Page 47 Friday, July 12, 2002 1:51 PM
write_IO("MTESt:TEST ON"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits2[read_IO(Msk_hits2, 15)]=0;//get the number of mask hits

write_IO("MEASure:CGRade:SOURce CHANnel1"); //measure Channel 1
write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct1[read_IO(Crss_pct1,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat1[read_IO(Ext_rat1,15)]=0;//get the extinction ratio

write_IO("MEASure:CGRade:SOURce CHANnel3"); //measure Channel 1
write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct2[read_IO(Crss_pct2,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat2[read_IO(Ext_rat2,15)]=0;//get the extinction ratio

stop = clock();

//display the results
printf("Channel 1:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits1,Crss_pct1,Ext_rat1);
printf("Channel 3:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits2,Crss_pct2,Ext_rat2);

return (stop-start); //return the total run time

return 1;
}//acquireParallel()
7-47

Sample Programs
init.bas Sample Program

book.book Page 48 Friday, July 12, 2002 1:51 PM
init.bas Sample Program

10 !file: init
20 !
30 !
40 ! This program demonstrates the order of commands suggested for operation of
50 ! the Agilent 86100 analyzer via GPIB. This program initializes the scope, acquires
60 ! data, performs automatic measurements, and transfers and stores the data on the
70 ! PC as time/voltage pairs in a comma-separated file format useful for spreadsheet
80 ! applications. It assumes an interface card at interface select code 7, an
90 ! Agilent 86100 scope at address 7, and the Agilent 86100 cal signal connected to Channel 1.
100 !
110 !
120 !
130 COM /Io/@Scope,@Path,Interface
140 COM /Raw_data/ INTEGER Data(4095)
150 COM /Converted_data/ REAL Time(4095),Volts(4095)
160 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
170 COM /Variables/ INTEGER Record_length
180 !
190 !
200 CALL Initialize
210 CALL Acquire_data
220 CALL Auto_msmts
230 CALL Transfer_data
240 CALL Convert_data
250 CALL Store_csv
260 CALL Close
270 END
280 !
290 !!
300 !
310 !
320 ! BEGIN SUBPROGRAMS
330 !
340 !!!
350 !
360 !
370 ! Subprogram name: Initialize
380 ! Parameters: none
390 ! Return value: none
400 ! Description: This routine initializes the interface and the scope. The instrument
410 ! is reset to a known state and the interface is cleared. System headers
420 ! are turned off to allow faster throughput and immediate access to the
430 ! data values requested by the queries. The analyzer time base,
440 ! channel, and trigger subsystems are then configured. Finally, the
450 ! acquisition subsystem is initialized.
460 !
470 !
480 SUB Initialize
490 COM /Io/@Scope,@Path,Interface
500 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
510 COM /Variables/ INTEGER Record_length
7-48

Sample Programs
init.bas Sample Program

book.book Page 49 Friday, July 12, 2002 1:51 PM
520 Interface=7
530 ASSIGN @Scope TO 707
540 RESET Interface
550 CLEAR @Scope
560 OUTPUT @Scope;"*RST"
570 OUTPUT @Scope;"*CLS"
580 OUTPUT @Scope;":SYSTem:HEADer OFF"
590 !Initialize Timebase: center reference, 2 ms full-scale (200 us/div),

 20 us delay
600 OUTPUT @Scope;":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"
610 ! Initialize Channel1: 1.6V full-scale (200mv/div), -415mv offset
620 OUTPUT @Scope;":CHANnel1:RANGe 1.6;OFFSet -415e-3"
630 !Initialize Trigger: Edge trigger, channel1 source at -415mv
640 OUTPUT @Scope;":TRIGger:SOURce FPANel;SLOPe POSitive"
650 OUTPUT @Scope;":TRIGger:LEVel-0.415"
660 ! Initialize acquisition subsystem
665 ! Real time acquisition, Averaging off, memory depth 4096
670 OUTPUT @Scope;":ACQuire:AVERage OFF;POINts 4096"
680 Record_length=4096
690 SUBEND
700 !
710 !
720 !!!
730 !
740 !
750 ! Subprogram name: Acquire_data
760 ! Parameters: none
770 ! Return value: none
780 ! Description: This routine acquires data according to the current instrument
790 ! setting. It uses the root level :DIGitize command. This command
800 ! is recommended for acquisition of new data because it will initialize
810 ! the data buffers, acquire new data, and ensure that acquisition
820 ! criteria are met before acquisition of data is stopped. The captured
830 ! data is then available for measurements, storage, or transfer to a
840 ! PC. Note that the display is automatically turned off by the :DIGitize
850 ! command and must be turned on to view the captured data.
860 !
870 !
880 SUB Acquire_data
890 COM /Io/@Scope,@Path,Interface
900 OUTPUT @Scope;":DIGitize CHANnel1"
910 OUTPUT @Scope;":CHANnel1:DISPlay ON"
920 SUBEND
930 !
940 !
950 !!!
960 !
970 !
980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none

1010 ! Description: This routine performs automatic measurements of volts peak-to-peak
1020 ! and frequency on the acquired data. It also demonstrates two methods
1030 ! of error detection when using automatic measurements.
1040 !
7-49

Sample Programs
init.bas Sample Program

book.book Page 50 Friday, July 12, 2002 1:51 PM
1050 !
1060 SUB Auto_msmts
1070 COM /Io/@Scope,@Path,Interface
1080 REAL Period,Vpp
1090 DIM Vpp_str$[64]
1100 DIM Period_str$[64]
1110 Bytes_read=0
1120 !
1130 ! Error checking on automatic measurements can be done using one of two methods.
1140 ! The first method requires that you turn on results in the Measurement subsystem
1150 ! using the command ":MEASure:SEND ON". When this is on, the scope will return the
1160 ! measurement and a result indicator. The result flag is zero if the measurement
1170 ! was successfully completed, otherwise a non-zero value is returned which indicates
1180 ! why the measurement failed. See the Programmer's Manual for descriptions of result
1190 ! indicators. The second method simply requires that you check the return value of
1200 ! the measurement. Any measurement not made successfully will return with the value
1210 ! +9.999e37. This could indicate that either the measurement was unable to be
1220 ! performed or that insufficient waveform data was available to make the measurement.
1230 !
1240 ! METHOD ONE
1250 !
1260 OUTPUT @Scope;":MEASure:SEND ON" !turn on results
1270 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$
1290 Bytes_read=LEN(Vpp_str$) !Find length of string
1300 CLEAR SCREEN
1310 IF Vpp_str$[Bytes_read;1]="0" THEN !Check result value
1320 PRINT
1330 PRINT "VPP is ";VAL(Vpp_str$[1,Bytes_read-1])
1340 PRINT
1350 ELSE
1360 PRINT
1370 PRINT "Automated vpp measurement error with result ";Vpp_str$[Bytes_read;1]
1380 PRINT
1390 END IF
1400 !
1410 !
1420 OUTPUT @Scope;":MEASure:PERiod? CHANnel1" !Query frequency
1430 ENTER @Scope;Period_str$
1440 Bytes_read=LEN(Period_str$) !Find string length
1450 IF Period_str$[Bytes_read;1]="0" THEN !Determine result value
1460 PRINT
1470 PRINT "Period is ";VAL(Period_str$[1,Bytes_read-1])
1480 PRINT
1490 ELSE
1500 PRINT
1510 PRINT "Automated period measurement error with result ";Period_str$[Bytes_read;1]
1520 PRINT
1530 END IF
1540 !
1550 !
1560 ! METHOD TWO
1570 !
1580 OUTPUT @Scope;":MEASure:SEND OFF" !turn off results
1590 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1600 ENTER @Scope;Vpp
7-50

Sample Programs
init.bas Sample Program

book.book Page 51 Friday, July 12, 2002 1:51 PM
1610 IF Vpp<9.99E+37 THEN
1620 PRINT
1630 PRINT "VPP is ";Vpp
1640 PRINT
1650 ELSE
1660 PRINT
1670 PRINT "Automated vpp measurement error ";Vpp
1680 PRINT
1690 END IF
1700 OUTPUT @Scope;":MEASure:PERiod? CHANnel1"
1710 ENTER @Scope;Period
1720 IF Freq<9.99E+37 THEN
1730 PRINT
1740 PRINT "Period is ";Period
1750 PRINT
1760 ELSE
1770 PRINT
1780 PRINT "Automated period measurement error";Period
1790 PRINT
1800 END IF
1810 SUBEND
1820 !
1830 !
1840 !!
1850 !
1860 !
1870 ! Subprogram name: Transfer_data
1880 ! Parameters: none
1890 ! Return value: none
1900 ! Description: This routine transfers the waveform data and conversion factors to
1910 ! to PC.
1920 !
1930 !
1940 SUB Transfer_data
1950 COM /Io/@Scope,@Path,Interface
1960 COM /Raw_data/ INTEGER Data(4095)
1970 COM /Converted_data/ REAL Time(4095),Volts(4095)
1980 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
1990 COM /Variables/ INTEGER Record_length
2000 ! define waveform data source and format
2010 OUTPUT @Scope;":WAVeform:SOURce CHANnel1"
2020 OUTPUT @Scope;":WAVeform:FORMat WORD"
2030 ! request values needed to convert raw data to real
2040 OUTPUT @Scope;":WAVeform:XINCrement?"
2050 ENTER @Scope;Xinc
2060 OUTPUT @Scope;":WAVeform:XORigin?"
2070 ENTER @Scope;Xorg
2080 OUTPUT @Scope;":WAVeform:XREFerence?"
2090 ENTER @Scope;Xref
2100 OUTPUT @Scope;":WAVeform:YINCrement?"
2110 ENTER @Scope;Yinc
2120 OUTPUT @Scope;":WAVeform:YORigin?"
2130 ENTER @Scope;Yorg
2140 OUTPUT @Scope;":WAVeform:YREFerence?"
2150 ENTER @Scope;Yref
2160 !
7-51

Sample Programs
init.bas Sample Program

book.book Page 52 Friday, July 12, 2002 1:51 PM
2170 ! request data
2180 OUTPUT @Scope;":WAVeform:DATA?"
2190 ENTER @Scope USING "#,1A";First_chr$!ignore leading #
2200 ENTER @Scope USING "#,1D";Header_length !input number of bytes in header value
2210 ENTER @Scope USING "#,"&VAL$(Header_length)&"D";Record_length !Record length in bytes
2220 Record_length=Record_length/2 !Record length in words
2230 ENTER @Scope USING "#,W";Data(*)
2240 ENTER @Scope USING "#,A";Term$!Enter terminating character
2250 !
2260 SUBEND
2270 !
2280 !
2290 !!
2300 !
2310 !
2320 ! Subprogram name: Convert_data
2330 ! Parameters: none
2340 ! Return value: none
2350 ! Description: This routine converts the waveform data to time/voltage information
2360 ! using the values Xinc, Xref, Xorg, Yinc, Yref, and Yorg used to describe
2370 ! the raw waveform data.
2380 !
2390 !
2400 SUB Convert_data
2410 COM /Io/@Scope,@Path,Interface
2420 COM /Raw_data/ INTEGER Data(4095)
2430 COM /Converted_data/ REAL Time(4095),Volts(4095)
2440 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
2450 COM /Variables/ INTEGER Record_length
2460 !
2470 FOR I=0 TO Record_length-1
2480 Time(I)=(((I)-Xref)*Xinc)+Xorg
2490 Volts(I)=((Data(I)-Yref)*Yinc)+Yorg
2500 NEXT I
2510 SUBEND
2520 !
2530 !
2540 !!
2550 !
2560 !
2570 ! Subprogram name: Store_csv
2580 ! Parameters: none
2590 ! Return value: none
2600 ! Description: This routine stores the time and voltage information about the waveform
2610 ! as time/voltage pairs in a comma-separated variable file format.
2620 !
2630 !
2640 SUB Store_csv
2650 COM /Io/@Scope,@Path,Interface
2660 COM /Converted_data/ REAL Time(4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
2680 COM /Variables/ INTEGER Record_length
2690 !Create a file to store pairs in
2700 ON ERROR GOTO Cont
2710 PURGE "Pairs.csv"
2720 Cont: OFF ERROR
7-52

Sample Programs
init.bas Sample Program

book.book Page 53 Friday, July 12, 2002 1:51 PM
2730 CREATE "Pairs.csv",Max_length
2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON
2750 !Output data to file
2760 FOR I=0 TO Record_length-1
2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT I
2790 SUBEND
2800 !
2810 !
2820 !!!
2830 !
2840 !
2850 ! Subprogram name: Close
2860 ! Parameters: none
2870 ! Return value: none
2880 ! Description: This routine closes the IO paths.
2890 !
2900 !
2910 SUB Close
2920 COM /Io/@Scope,@Path,Interface
2930
2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND
7-53

Sample Programs
srq.bas Sample Program

book.book Page 54 Friday, July 12, 2002 1:51 PM
srq.bas Sample Program

10 !File: srq.bas
20 !
30 ! This program demonstrates how to set up and check Service Requests from
40 ! the scope. It assumes an interface select code of 7 with a scope at
50 ! address 7. It also assumes a signal is connected to the scope.
60 !
70 !
80 COM /Io/@Scope,Interface
90 COM /Variables/Temp
100 CALL Initialize
110 CALL Setup_srq
120 ON INTR Interface CALL Srq_handler !Set up routine to handle interrupt
130 ENABLE INTR Interface;2 !Enable SRQ Interrupt for Interface
140 CALL Create_srq
150 CALL Close
160 END
170 !
180 !!!
190 !
200 ! BEGIN SUBPROGRAMS
210 !
220 !!
230 !
240 !
250 ! Subprogram name: Initialize
260 ! Parameters: none
270 ! Return value: none
280 ! Description: This routine initializes the interface and the scope.
290 ! The instrument is reset to a known state and the interface is
300 ! cleared. System headers are turned off to allow faster throughput
310 ! and immediate access to the data values requested by the queries.
320 !
330 !
340 SUB Initialize
350 COM /Io/@Scope,Interface
360 ASSIGN @Scope TO 707
370 Interface=7
380 RESET Interface
390 CLEAR @Scope
400 OUTPUT @Scope;"*RST"
410 OUTPUT @Scope;"*CLS"
420 OUTPUT @Scope;":SYSTem:HEADer OFF"
430 OUTPUT @Scope;":AUToscale"
440 SUBEND
450 !
460 !
470 !
480 !!!
490 !
500 ! Subprogram name: Setup_srq
510 ! Parameters: none
7-54

Sample Programs
srq.bas Sample Program

book.book Page 55 Friday, July 12, 2002 1:51 PM
520 ! Return value: none
530 ! Description: This routine sets up the scope to generate Service Requests.
540 ! It sets the Service Request Enable Register Event Status Bit
550 ! and the Standard Event Status Enable REgister to allow SRQs on
560 ! Command or Query errors.
570 !
580 !
590 SUB Setup_srq
600 COM /Io/@Scope,Interface
610 OUTPUT @Scope;"*SRE 32" !Enable Service Request Enable Registers - Event Status bit
620 !
630 ! Enable Standard Event Status Enable Register:
640 ! enable bit 4 - Command Error - value 32
650 ! bit 1 - Query Error - value 4
660 OUTPUT @Scope;"*ESE 36"
670 SUBEND
680 !
690 !
700 !
710 !!
720 !
730 !
740 ! Subprogram name: Create_srq
750 ! Parameters: none
760 ! Return value: none
770 ! Description: This routine will send an illegal command to the scope to
780 ! show how to detect and handle an SRQ. A query is sent to
790 ! the scope which is then followed by another command causing
800 ! a query interrupt error. An illegal command header is then
810 ! sent to demonstrate how to handle multiple errors in the error queue.
820 !
830 !
840 !
850 SUB Create_srq
860 COM /Io/@Scope,Interface
870 DIM Buf$[256]
880 OUTPUT @Scope;":CHANnel2:DISPlay?"
890 OUTPUT @Scope;":CHANnel2:DISPlay OFF" !send query interrupt
900 OUTPUT @Scope;":CHANnel:DISPlay OFF" !send illegal header
910 ! Do some stuff to allow time for SRQ to be recognized
920 !
930 OUTPUT @Scope;"*IDN?" !Request IDN to verify communication
940 ENTER @Scope;Buf$!NOTE: There is a leading zero to this query response
950 PRINT !which represents the response to the interrupted query above
960 PRINT Buf$
970 PRINT
980 SUBEND
990 !
1000 !
1010 !
1020 !!!
1030 !
1040 !
1050 ! Subprogram name: Srq_handler
1060 ! Parameters: none
1070 ! Return value: none
7-55

book.book Page 56 Friday, July 12, 2002 1:51 PM
1080 ! Description: This routine verifies the status of the SRQ line. It then checks
1090 ! the status byte of the scope to determine if the scope caused the
1100 ! SRQ. Note that using a SPOLL to read the status byte of the scope
1110 ! clears the SRQ and allows another to be generated. The error queue
1120 ! is read until all errors have been cleared. All event registers and
1130 ! queues, except the output queue, are cleared before control is returned
1140 ! to the main program.
1150 !
1160 !
1170 !
1180 SUB Srq_handler
1190 COM /Io/@Scope,Interface
1200 DIM Error_str$[64]
1210 INTEGER Srq_asserted,More_errors
1220 Status_byte=SPOLL(@Scope)
1230 IF BIT(Status_byte,6) THEN
1240 More_errors=1
1250 WHILE More_errors
1260 OUTPUT @Scope;":SYSTem:ERROR? STRING"
1270 ENTER @Scope;Error_str$
1280 PRINT
1290 PRINT Error_str$
1300 IF Error_str$[1,1]="0" THEN
1310 OUTPUT @Scope;"*CLS"
1320 More_errors=0
1330 END IF
1340 END WHILE
1350 ELSE
1360 PRINT
1370 PRINT "Scope did not cause SRQ"
1380 PRINT
1390 END IF
1400 ENABLE INTR Interface;2 !re-enable SRQ
1410 SUBEND
1420 !
1430 !
1440 !!
1450 !
1460 ! Subprogram name: Close
1470 ! Parameters: none
1480 ! Return value: none
1490 ! Description: This routine resets the interface.
1500 !
1510 !
1520 !
1530 SUB Close
1540 COM /Io/@Scope,Interface
1550
1560 RESET Interface
1570 SUBEND
1580 !
1590 !
1600 !!

Sample Programs
lrn_str.bas Sample Program

book.book Page 57 Friday, July 12, 2002 1:51 PM
lrn_str.bas Sample Program

10 !FILE: lrn_str.bas
20 !
30 !THIS PROGRAM WILL INITIALIZE THE SCOPE, AUTOSCALE, AND DIGITIZE THE WAVEFORM
40 !INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 !AN Agilent 86100 at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL SIGNAL ATTACHED TO
80 !CHANNEL 1.
90 !
100 !
110 COM /Io/@Scope,@Path,Interface
120 COM /Variables/Max_length
130 CALL Initialize
140 CALL Store_lrnstr
150 CALL Change_setup
160 CALL Get_lrnstr
170 CALL Close
180 END
190 !
200 !
210 !!
220 !
230 ! BEGIN SUBROUTINES
240 !
250 !!
260 ! Subprogram name: Initialize
270 ! Parameters: none
280 ! Return value: none
290 ! Description: This routine initializes the path descriptions and resets the
300 ! interface and the scope. It performs an autoscale on the signal,
310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the learnstring so the
340 ! return string is in the proper format.
350 !
360 SUB Initialize
370 COM /Io/@Scope,@Path,Interface
380 COM /Variables/Max_length
390 Max_length=14000
400 ASSIGN @Scope TO 707
410 Interface=7
420 RESET Interface
430 CLEAR @Scope
440 OUTPUT @Scope;"*RST"
450 OUTPUT @Scope;"*CLS"
460 OUTPUT @Scope;":SYSTem:HEADer ON"
470 OUTPUT @Scope;":AUToscale"
480 SUBEND
490 !
500 !
510 !!!
7-57

Sample Programs
lrn_str.bas Sample Program

book.book Page 58 Friday, July 12, 2002 1:51 PM
520 !
530 !
540 ! Subprogram name: Store_lrnstr
550 ! Parameters: none
560 ! Return value: none
570 ! Description: This routine creates a file in which to store the learnstring
580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.
610 !
620 SUB Store_lrnstr
630 COM /Io/@Scope,@Path,Interface
640 COM /Variables/Max_length
650 ON ERROR GOTO Cont
660 PURGE "Lrn_strg"
670 Cont: OFF ERROR
680 CREATE BDAT "Lrn_strg",1,14000
690 DIM Setup$[14000]
700 ASSIGN @Path TO "Lrn_strg"
710 OUTPUT @Scope;":SYSTem:SETup?"
720 ENTER @Scope USING "-K";Setup$
730 OUTPUT @Path,1;Setup$
740 CLEAR SCREEN
750 PRINT "Learn string stored in file: Lrn_strg"
760 SUBEND
770 !
780 !
790 !!
800 !
810 ! Subprogram name: Change_setup
820 ! Parameters: none
830 ! Return value: none
840 ! Description: This subprogram requests that the user change the
850 ! scope setup, then press a key to continue.
860 !
870 !
880 SUB Change_setup
890 COM /Io/@Scope,@Path,Interface
900
910 PRINT
920 PRINT "Please adjust setup and press Continue to resume."
930 PAUSE
940 SUBEND
950 !
960 !
970 !!
980 !
990 ! Subprogram name: Get_lrnstr
1000 ! Parameters: none
1010 ! Return value: none
1020 ! Description: This subprogram loads a learnstring from the
1030 ! file "Lrn_strg" to the scope.
1040 !
1050 !
1060 SUB Get_lrnstr
1070 COM /Io/@Scope,@Path,Interface
7-58

Sample Programs
lrn_str.bas Sample Program

book.book Page 59 Friday, July 12, 2002 1:51 PM
1080 COM /Variables/Max_length
1090 DIM Setup$[14000]
1100 ENTER @Path,1;Setup$
1110 OUTPUT @Scope USING "#,-K";Setup$
1120 OUTPUT @Scope;":RUN"
1130 SUBEND
1140 !
1150 !
1160 !!
1170 !
1180 !
1190 ! Subprogram name: Close
1200 ! Parameters: none
1210 ! Return value: none
1220 ! Description: This routine resets the interface, and closes all I/O paths.
1230 !
1240 !
1250 !
1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface
1280
1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND
1320 !
1330 !!
7-59

Sample Programs
lrn_str.bas Sample Program

book.book Page 60 Friday, July 12, 2002 1:51 PM
7-60

book.book Page 1 Friday, July 12, 2002 1:51 PM
8

Receiving Common Commands 8-2
Status Registers 8-2
Common Commands 8-3

*CLS (Clear Status) 8-3
*ESE (Event Status Enable) 8-3
*ESR? (Event Status Register) 8-5
*IDN? (Identification Number) 8-6
*LRN? (Learn) 8-6
*OPC (Operation Complete) 8-7
*OPT? (Option) 8-9
*RCL (Recall) 8-9
*RST (Reset) 8-10
*SAV (Save) 8-14
*SRE (Service Request Enable) 8-14
*STB? (Status Byte) 8-16
*TRG (Trigger) 8-18
*TST? (Test) 8-18
*WAI (Wait-to-Continue) 8-19
Common Commands

Common Commands
Common Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Common Commands

Common commands are defined by the IEEE 488.2 standard. They control
generic device functions that are common to many different types of instru-
ments. Common commands can be received and processed by the analyzer,
whether they are sent over the GPIB as separate program messages or within
other program messages.

Receiving Common Commands

Common commands can be received and processed by the analyzer, whether
they are sent over the GPIB as separate program messages or within other
program messages. If a subsystem is currently selected and a common com-
mand is received by the analyzer, the analyzer remains in the selected sub-
system. For example, if the program message

"ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the analyzer, the analyzer enables averaging, clears the status
information, then sets the number of averages without leaving the selected
subsystem.

Status Registers

The following two status registers used by common commands have an enable
(mask) register. By setting bits in the enable register, the status information
can be selected for use. Refer to Chapter 3, “Status Reporting” for a complete
discussion of status.
8-2

Common Commands
Common Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
Common Commands

*CLS (Clear Status)

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the analyzer.

10 OUTPUT 707;"*CLS"
20 END

See Also Refer to Chapter 3, “Status Reporting” for a complete discussion of status.

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in
the Standard Event Status Register as shown in Table 8-2 on page 8-4.

Example This example enables the User Request (URQ) bit of the Standard Event Sta-
tus Enable Register. When this bit is enabled and a front-panel key is pressed,
the Event Summary bit (ESB) in the Status Byte Register is also set.

10 OUTPUT 707;"*ESE 64"
20 END

Query *ESE?

The *ESE? query returns the current contents of the Standard Event Status
Enable Register.

Returned Format <mask><NL>

Table 8-1. Status Registers

Status Register Enable Register

Event Status Register Event Status Enable Register
Status Byte Register Service Request Enable Register
8-3

Common Commands
Common Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
<mask> An integer, +0 to +255 (the plus sign is also returned), representing a mask
value for the bits enabled in the Standard Event Status Register as shown in
Table 8-2 on page 8-4.

Example This example places the current contents of the Standard Event Status Enable
Register in the numeric variable, Event. The value of the variable is printed on
the computer's screen.

10 OUTPUT 707;"*ESE?"
20 ENTER 707;Event
30 PRINT Event
40 END

The Standard Event Status Enable Register contains a mask value for the bits
to be enabled in the Standard Event Status Register. A "1" in the Standard
Event Status Enable Register enables the corresponding bit in the Standard
Event Status Register. A "0" in the enable register disables the corresponding
bit.

See Also Refer to Chapter 3, “Status Reporting” for a complete discussion of status.

Table 8-2. Standard Event Status Enable Register Bits

Bit Weight Enables Definition

7 128 PON - Power On Indicates power is turned on.
6 64 URQ - User Request Not used. Permanently set to zero.
5 32 CME - Command Error Indicates whether the parser detected an

error.
4 16 EXE - Execution Error Indicates whether a parameter was out-of-

range, or was inconsistent with the current
settings.

3 8 DDE - Device Dependent Error Indicates whether the device was unable to
complete an operation for device-
dependent reasons.

2 4 QYE - Query Error Indicates if the protocol for queries has
been violated.

1 2 RQC - Request Control Indicates whether the device is requesting
control.

0 1 OPC - Operation Complete Indicates whether the device has
completed all pending operations.
8-4

Common Commands
Common Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
*ESR? (Event Status Register)

Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading this register clears the Standard Event Status Register, as does *CLS.

Returned Format <status><NL>

<status> An integer, 0 to 255, representing the total bit weights of all bits that are high
at the time you read the register.

Example This example places the current contents of the Standard Event Status Regis-
ter in the numeric variable, Event, then prints the value of the variable to the
computer's screen.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Event
30 PRINT Event
40 END

Table 8-3 lists each bit in the Event Status Register and the corresponding bit
weights.

Table 8-3. Standard Event Status Register Bits

Bit Bit Weight Bit Name Condition

7 128 PON 1 = OFF to ON transition has occurred.
6 64 Not Used. Permanently set to zero.
5 32 CME 0 = no command errors.

1 = a command error has been detected.
4 16 EXE 0 = no execution error.

1 = an execution error has been detected.
3 8 DDE 0 = no device-dependent errors.

1 = a device-dependent error has been detected.
2 4 QYE 0 = no query errors.

1 = a query error has been detected.
1 2 RQC 0 = request control - NOT used - always 0.
0 1 OPC 0 = operation is not complete.

1 = operation is complete.

0 = False = Low 1 = True = High
8-5

Common Commands
Common Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
*IDN? (Identification Number)

Query *IDN?

The *IDN? query returns the company name, analyzer model number, serial
number, and software version by returning the following string:

AGILENT TECHNOLOGIES,86100A,<USXXXXXXXX>,<Rev #>

<USXXXXXXXX> Specifies the serial number of the analyzer. The first two letters and digits of
the serial prefix are the country of manufacture for the analyzer. The last five
digits are the serial suffix, which is assigned sequentially, and is different for
each analyzer.

<Rev #> Specifies the software version of the analyzer, and is the revision number.

Returned Format AGILENT TECHNOLOGIES,86100A,USXXXXXXXX,A.XX.XX<NL>

Example This example places the analyzer's identification information in the string vari-
able, Identify$, then prints the identification information to the computer
screen.

10 DIM Identify$[50] !Dimension variable
20 OUTPUT 707;"*IDN?"
30 ENTER 707;Identify$
40 PRINT Identify$
50 END

*LRN? (Learn)

Query *LRN?

The *LRN? query returns a string that contains the analyzer's current setup.
The analyzer's setup can be stored and sent back to the analyzer at a later
time. This setup string should be sent to the analyzer just as it is. It works
because of its embedded ":SYStem:SETup" header.

Returned Format :SYSTem:SETup <setup><NL>

<setup> This is a definite length arbitrary block response specifying the current ana-
lyzer setup. The block size is subject to change with different firmware revi-
sions.
8-6

Common Commands
Common Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
Example This example sets the scope’s address and asks for the learn string, then
determines the string length according to the IEEE 488.2 block specification.
It then reads the string and the last EOF character.

10 ! Set up the scope’s address and
20 ! ask for the learn string...
30 ASSIGN @Scope TO 707
40 OUTPUT @Scope:"*LRN?"
50 !
60 ! Search for the # sign.
70 !
80 Find_pound_sign: !
90 ENTER @Scope USING "#,A";Thischar$
100 IF Thischar$<>"#" THEN Find_pound_sign
110 !
120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.
140 ! Read the string then the last EOF char.
150 !
160 ENTER @Scope USING "#,D";Digit_count
170 ENTER @Scope USING "#,"&VAL$(Digit_count)&"D";Stringlength
180 ALLOCATE Learn_string$[Stringlength+1]
190 ENTER @Scope USING "-K";Learn_string$
200 OUTPUT 707;":syst:err?"
210 ENTER 707;Errornum
220 PRINT "Error Status=";Errornum

See Also SYSTem:SETup command and query. When HEADers and LONGform are ON,
the SYSTem:SETup command performs the same function as the *LRN query.
Otherwise, *LRN and SETup are not interchangeable.

*OPC (Operation Complete)

Command *OPC

The *OPC command sets the operation complete bit in the Standard Event
Status Register when all pending device operations have finished.

*LRN? Returns Prefix to Setup Block

The *LRN query always returns :SYSTem:SETup as a prefix to the setup block. The SYS-
Tem:HEADer command has no effect on this response.
8-7

Common Commands
Common Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
Example This example sets the operation complete bit in the Standard Event Status
Register when the PRINT operation is complete.

10 OUTPUT 707;":PRINT;*OPC"
20 END

Query *OPC?

The *OPC? query places an ASCII character “1” in the analyzer's output queue
when all pending selected device operations have finished.

Returned Format 1<NL>

Example This example places an ASCII character “1” in the analyzer's output queue
when the SINGle operation is complete. Then the value in the output queue is
placed in the numeric variable “Complete.”

10 OUTPUT 707;":SINGle;*OPC?"
20 ENTER 707;Complete

Note

Three commands are available for the synchronization between remote command scripts
and the instrument:

• The *OPC command: This command sets a bit in the Standard Event Status Register
when all pending device operations have finished. It is useful to verify the completion
of commands that could take a variable amount of time or commands executed in par-
allel with other commands, such as PRINt, and the limit test commands (AC-
Quire:RUNtil, MTEST:RUNtil, and LTEST). It does not stop the execution of the remote
script.

• The *OPC query: This query allows synchronization between the computer and the in-
strument by using the message available (MAV) bit in the Status Byte, or by reading
the output queue. Unlike the *OPC command, the *OPC query does not affect the OPC
event bit in the Standard Event Status Register. The execution of the remote script is
halted and therefore the *OPC query should be used judiciously. For example, the com-
mand “:MTEST:RUNtil FSAMPLES,100’; *OPC?” will lock the remote interface until
100 failed samples are detected, which could take a very long time. Under these cir-
cumstances, the user must send a device clear or power down to re-start the instru-
ment.

• The *WAI command: This command is similar to the *OPC? query as it will also block
the execution of the remote script until all pending operations are finished. It is par-
ticularly useful if the host computer is connected to two or more instruments. This
command will not block the GPIB bus, allowing the computer to continue issuing com-
mands to the instrument not executing the *WAI command.
8-8

Common Commands
Common Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
30 PRINT Complete
40 END

The *OPC query allows synchronization between the computer and the ana-
lyzer by using the message available (MAV) bit in the Status Byte, or by read-
ing the output queue. Unlike the *OPC command, the *OPC query does not
affect the OPC Event bit in the Standard Event Status Register.

*OPT? (Option)

Query *OPT?

The OPT? query returns a string with a list of installed options. The query
returns a 1 as the first character if option 001 (divided trigger - 12 GHz) is
installed. If no options are installed, the string will have a 0 as the first charac-
ter.

The length of the returned string may increase as options become available in
the future. Once implemented, an option name will be appended to the end of
the returned string, delimited by a comma.

Example This example places all options into the string variable, Options$, then prints
the option model and serial numbers to the computer's screen.

10 DIM Options$[100]
20 OUTPUT 707;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$
50 END

*RCL (Recall)

Command *RCL <register>

The *RCL command restores the state of the analyzer to a setup previously
stored in the specified save/recall register. An analyzer setup must have been
stored previously in the specified register. Registers 0 through 9 are general-
purpose registers and can be used by the *RCL command.

Note

If instrument conditions have been set that can not be met, and the *OPC? is sent out,
the instrument will not continue remote execution. Under these circumstances, the user
must send a device clear or power down to restart the instrument.
8-9

Common Commands
Common Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
<register> An integer, 0 through 9, specifying the save/recall register that contains the
analyzer setup you want to recall.

Example This example restores the analyzer to the analyzer setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"
20 END

See Also SAVe. An error message appears on the analyzer display if nothing has been
previously saved in the specified register.

*RST (Reset)

Command *RST

The *RST command places the analyzer in a known state. Table 8-4 lists the
reset conditions as they relate to the analyzer commands. This is the same as
using the front-panel default setup button.

Example This example resets the analyzer to a known state.

10 OUTPUT 707;"*RST"
20 END

This following table shows the analyzer’s default setup.

Table 8-4. Default Setup (1 of 5)

Acquisition

Run/Stop 100 ms

Grid on

30

Enabled

8 hours

Default legend

Off

Off (until the first marker is placed on
the screen)

User selectable if more than one
source is available.

28 ns

0V
8-10

Common Commands
Common Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
Points/Waveform (Record length) Automatic - 1350 points
Averaging Off
of Averages 16

Trigger

Source Front Panel
Bandwidth 2.5 GHz
Hysteresis Normal
Slope Positive
Gated Trigger Off
Level 0 V
Time Base
Units Time
Scale 1 ns/div
Position 24 ns
Reference Left

Display

Persistence Variable (oscilloscope mode)

Gray Scale (Infinite) (Eye/Mask mode)
Persistence Time 100 ms
Graticule Grid on
Intensity 30
Backlight Saver Enabled
Turn off backlight after 8 hours
Colors Default legend
Labels Off

Markers

Mode
Readout Off (until the first marker is placed on

the screen)
X1, Y1 source User selectable if more than one

source is available
X1 position 28 ns
Y1 position 0V
X2, Y2 source User selectable if more than one

source is available
X2 position 24 ns
Y2 position 0V

Table 8-4. Default Setup (2 of 5)
8-11

Common Commands
Common Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
Measure Oscilloscope mode Eye/Mask mode

QuickMeas, Meas.1 V p-p Extinction ratio
QuickMeas, Meas. 2 Period Jitter
QuickMeas, Meas. 3 Frequency Average power
QuickMeas, Meas. 4 Rise time Crossing %
Start mask test — Off

Define Measure

Thresholds - percent 10%, 50%, 90%
Thresholds - volts 0.0, 1.6, 5.0
Top-Base Definition Standard
Statistics Off
Top-Base volts 0.0, 5.0
Measurements Off
Start Edge Rising, 1 level, middle
Stop Edge Falling, 1 level, middle
Eye Window 1 40%
Eye Window 2 60%
Duty cycle distortion format Time
Extinction ratio format Decibel
Eye width Time
Jitter RMS
Average power Watts

Waveform

Memory display Off
Waveform source First available channel or memory 1
Memory type Waveform
Math
Function Function 1
Function state Off
Operator Magnify
Operand 1 First available channel or memory 1
Operand 2 First available channel or memory 1
Horizontal scaling Track source
Vertical scaling Track source

Channel

Table 8-4. Default Setup (3 of 5)
8-12

Common Commands
Common Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
Display On (lowest number installed channel;
others are off)

Scale 50 µW/div or 10 mV/div
Offset 0.0 V or 0 W
Units Volts (or watts)
Filter Dependent on module
Wavelength Wavelength 1
Bandwidth Dependent on module

Histogram

Mode Off
Axis Horizontal
Window source First available channel
Size Horizontal - 4.0 divisions

Vertical - 5.0 divisions
X1 position 25 ns
Y1 position 1 division up from bottom, value

depends on module
X2 position 33 ns
Y2 position 1 division down from top, value

depends on module

Utilities

Cal Output 5.0 mv
Calibration Details Off
Self Test Scope Self Tests
Service Extensions Off
Remote Interface Unchanged
Dialog Preferences Opaque Dialogs
Allow Multiple Active Dialogs Off
Sound enabled, volume 48
Limit Test
Test Off
Measurement None
Fail when Outside
Upper limit 10
Lower limit -10
Run until Forever
Run until failures 1 failure

Table 8-4. Default Setup (4 of 5)
8-13

Common Commands
Common Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
*SAV (Save)

Command *SAV <register>

The *SAV command stores the current state of the analyzer in a save register.

<register> An integer, 0 through 9, specifying which register to save the current analyzer
setup.

Example This example stores the current analyzer setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

See Also *RCL (Recall)

*SRE (Service Request Enable)

Command *SRE <mask>

Run until waveforms 1,000,000 waveforms
Store summary Off
Store screen Off
Store waveforms Off

Mask Test

Test Off
Scale source Displayed channel
X1 position 2 divisions from left, 26 ns
1 level 2 divisions down
0 level 2 divisions up
Mask margins Off
Run until Forever
Failed waveforms 1 failure
Failed samples 1 sample
Waveforms 1,000,000
Samples 1,000,000
Store waveforms Off
Store summary Off
Store screen Off

Table 8-4. Default Setup (5 of 5)
8-14

Common Commands
Common Commands

book.book Page 15 Friday, July 12, 2002 1:51 PM
The *SRE command sets the Service Request Enable Register bits. By setting
the *SRE, when the event happens, you have enabled the analyzer’s interrupt
capability. The scope will then do an SRQ (service request), which is an inter-
rupt.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in
the Service Request Enable Register as shown in Table 8-5 on page 8-15.

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV bit is
high.

10 OUTPUT 707;"*SRE 16"
20 END

Query *SRE?

The *SRE? query returns the current contents of the Service Request Enable
Register.

Returned Format <mask><NL>

<mask> An integer, 0 to 255, representing a mask value for the bits enabled in the Ser-
vice Request Enable Register.

Example This example places the current contents of the Service Request Enable Reg-
ister in the numeric variable, Value, then prints the value of the variable to the
computer's screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value
30 PRINT Value
40 END

The Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A “1” in the Service Request Enable Reg-
ister enables the corresponding bit in the Status Byte Register. A “0” disables
the bit.

Table 8-5. Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register
6 64 Not Used
5 32 ESB - Event Status Bit
4 16 MAV - Message Available
3 8 Not Used
2 4 MSG - Message
8-15

Common Commands
Common Commands

book.book Page 16 Friday, July 12, 2002 1:51 PM
*STB? (Status Byte)

Query *STB?

The *STB? query returns the current contents of the Status Byte, including
the Master Summary Status (MSS) bit. See Table 8-6 on page 8-16 for Status
Byte Register bit definitions.

Returned Format <value><NL>

<value> An integer, from 0 to 255.

Example This example reads the contents of the Status Byte into the numeric variable,
Value, then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*STB?"
20 ENTER 707;Value
30 PRINT Value
40 END

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is
reported on bit 6. MSS is the inclusive OR of the bitwise combination, exclud-
ing bit 6, of the Status Byte Register and the Service Request Enable Register.
The MSS message indicates that the scope is requesting service (SRQ).

1 2 USR - User Event Register
0 1 TRG - Trigger

Table 8-5. Service Request Enable Register Bits

Table 8-6. Status Byte Register Bits

Bit Bit Weight Bit Name Condition

7 128 OPER 0 = no enabled operation status conditions have occurred
1 = an enabled operation status condition has occurred

6 64 RQS/MSS 0 = analyzer has no reason for service
1 = analyzer is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 — 0 = not used
2 4 MSG 0 = no message has been displayed

1 = message has been displayed
8-16

Common Commands
Common Commands

book.book Page 17 Friday, July 12, 2002 1:51 PM
1 2 USR 0 = no enabled user event conditions have occurred
1 = an enabled user event condition has occurred

0 1 TRG 0 = no trigger has occurred
1 = a trigger occurred

0 = False = Low 1 = True = High

Table 8-6. Status Byte Register Bits
8-17

Common Commands
Common Commands

book.book Page 18 Friday, July 12, 2002 1:51 PM
*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as the Group Execute Trigger mes-
sage (GET) or RUN command. It acquires data for the active waveform dis-
play, if the trigger conditions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display
according to the current settings.

10 OUTPUT 707;"*TRG"
20 END

*TST? (Test)

Query *TST?

The *TST? query causes the analyzer to perform a self-test, and places a
response in the output queue indicating whether or not the self-test com-
pleted without any detected errors. Use the :SYSTem:ERRor command to
check for errors. A zero indicates that the test passed and a non-zero indicates
the self-test failed.

Returned Format <result><NL>

<result> 0 for pass; non-zero for fail.

Example This example performs a self-test on the analyzer and places the results in the
numeric variable, Results. The program then prints the results to the com-
puter's screen.

10 OUTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results
40 END

If a test fails, refer to the troubleshooting section of the service guide.

The Self-Test takes approximately 3 minutes to complete. When using time-
outs in your program, 200 seconds duration is recommended.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? query.
8-18

Common Commands
Common Commands

book.book Page 19 Friday, July 12, 2002 1:51 PM
*WAI (Wait-to-Continue)

Command *WAI

The *WAI command prevents the analyzer from executing any further com-
mands or queries until all currently executing commands are completed. See
*OPC for alternate methods for synchronization.

Example This example executes a single acquisition, and causes the instrument to wait
until acquisition is complete before executing any additional commands.

10 OUTPUT 707;"SINGle;*WAI"

20 END

Note

Three commands are available for the synchronization between remote command scripts
and the instrument:

• The *OPC command: This command sets a bit in the Standard Event Status Register
when all pending device operations have finished. It is useful to verify the completion
of commands that could take a variable amount of time or commands executed in par-
allel with other commands, such as PRINt, and the limit test commands (AC-
Quire:RUNtil, MTEST:RUNtil, and LTEST). It does not stop the execution of the remote
script.

• The *OPC query: This query allows synchronization between the computer and the in-
strument by using the message available (MAV) bit in the Status Byte, or by reading
the output queue. Unlike the *OPC command, the *OPC query does not affect the OPC
event bit in the Standard Event Status Register. The execution of the remote script is
halted and therefore the *OPC query should be used judiciously. For example, the com-
mand “:MTEST:RUNtil FSAMPLES,100’; *OPC?” will lock the remote interface until
100 failed samples are detected, which could take a very long time. Under these cir-
cumstances, the user must send a device clear or power down to re-start the instru-
ment.

The *WAI command: This command is similar to the *OPC? query as it will also block the
execution of the remote script until all pending operations are finished. It is particularly
useful if the host computer is connected to two or more instruments. This command will
not block the GPIB bus, allowing the computer to continue issuing commands to the
instrument not executing the *WAI command.
8-19

Common Commands
Common Commands

book.book Page 20 Friday, July 12, 2002 1:51 PM
8-20

book.book Page 1 Friday, July 12, 2002 1:51 PM
9
Status Reporting Data Structures 9-3
Root Level Commands 9-3

AEEN (Acquisition Limits Event Enable register) 9-3
ALER? (Acquisition Limits Event Register) 9-3
AUToscale 9-4
BLANk 9-5
CDISplay 9-6
COMMents 9-6
CREE (Clock Recovery Event Enable Register) 9-6
CRER? (Clock Recovery Event Register) 9-7
DIGitize 9-8
LER? (Local Event Register) 9-9
LTEE (Limit Test Event Enable register) 9-10
LTER? (Limit Test Event Register) 9-10
MODel? 9-11
MTEE (Mask Test Event Enable Register) 9-11
MTER? (Mask Test Event Register) 9-12
OPEE 9-12
OPER? 9-13
PRINt 9-13
RECall:SETup 9-13
RUN 9-14
SERial (Serial Number) 9-14
SINGle 9-15
STOP 9-15
STORe:SETup 9-15
STORe:WAVeform 9-16
TER? (Trigger Event Register) 9-16
UEE (User Event Enable register) 9-17
UER? (User Event Register) 9-17
VIEW 9-17
Root Level Commands

Root Level Commands
Root Level Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Root Level Commands

Root level commands control many of the basic operations of the analyzer that
can be selected by pressing the labeled keys on the front panel. These com-
mands are always recognized by the parser if they are prefixed with a colon,
regardless of the current tree position. After executing a root level command,
the parser is positioned at the root of the command tree.
9-2

Root Level Commands
Status Reporting Data Structures

book.book Page 3 Friday, July 12, 2002 1:51 PM
Status Reporting Data Structures

For any of the Standard Event Status Register bits to generate a summary bit,
the bits must be enabled. These bits are enabled by using the *ESE common
command to set the corresponding bit in the Standard Event Status Enable
Register. URQ in the Event Status Register always returns 0.

To generate a service request (SRQ) interrupt to an external computer, at
least one bit in the Status Byte Register must be enabled. These bits are
enabled by using the *SRE common command to set the corresponding bit in
the Service Request Enable Register. These enabled bits can then set RQS and
MSS (bit 6) in the Status Byte Register. In the SRE query, bit 6 always
returns 0.

Various root level commands documented in this chapter query and set vari-
ous registers within the register set.

Root Level Commands

AEEN (Acquisition Limits Event Enable register)

Command :AEEN <mask>

This command sets a mask into the Acquisition Limits Event Enable register.
A “1” in a bit position enables the corresponding bit in the Acquisition Limits
Event Register to set bit 9 in the Operation Status Register.

<mask> The decimal weight of the enabled bits.

Query :AEEN?

The query returns the current decimal value in the Acquisition Limits Event
Enable register.

Returned Format [:AEEN] <mask><NL>

ALER? (Acquisition Limits Event Register)

Query :ALER?

This query returns the current value of the Acquisition Limits Event Register
as a decimal number and also clears this register.
9-3

Root Level Commands
Root Level Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Bit 0 (COMP) of the Acquisition Limits Event Register is set when the acquisi-
tion completes. The acquisition completion criteria are set by the
:ACQuire:RUNTil command.

Returned Format [:ALER] <value><NL>

AUToscale

Command :AUToscale

This command causes the analyzer to evaluate the current input signal and
find the optimum conditions for displaying the signal. It adjusts the vertical
gain and offset for the channel, and sets the time base on the lowest numbered
input channel that has a signal.

If signals cannot be found on any vertical input, the analyzer is returned to its
former state.

Autoscale sets the following:

• Channel Display, Scale, and Offset
• Trigger and Level
• Time Base Scale and Position

Autoscale turns off the following:

• Measurements on sources that are turned off
• Functions
• Windows
• Memories

Acquistion Limit Tests on Individual Channels

When in independent acquisition mode and a channel finishes the corresponding bit of
the acquisition limit event register (ALER) is set. For example, when channel 1 limit is
reached bit 1 of the ALER is set; when channel 2 limit is reached bit 2 of the ALER is set.
Bit 0 of the ALER is not set until all channels that acquisition limit tests are being per-
formed on have finished. If the acquisition limit of a channel is set to off then the corre-
sponding bit of the ALER for that channel is not set during the acquisition limit test.
ALER? will return the decimal weight of the enabled bits of the ALER. For example, if
channels 1and 2 have reached their acquisition limit and no other channels have acquisi-
tion limits specified, then the value returned by the ALER? will be 7 (111 in binary). Bits
0, 1, & 2 of the ALER will then be set.
9-4

Root Level Commands
Root Level Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
No other controls are affected by Autoscale.

Example This example automatically scales the analyzer for the input signal.

10 OUTPUT 707;":AUTOSCALE"
20 END

Query :AUToscale?

Returns a string explaining the results of the last autoscale. The string is
empty if the last autoscale completed successfully. The returned string stays
the same until the next autoscale is executed.

The following are examples of strings returned by the AUToscale? query.

No channels turned on

Left module requires calibration for autoscale

Right module requires calibration for autoscale

Channel n signal is too small

Channel n signal is too high

Channel n offset is too low

Channel n offset is too high

No trigger or trigger too slow

Trigger is in Free Run

Unable to set horizontal scale/delay for channel n

Returned Format [:AUToscale] <string>

BLANk

Command :BLANk {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N> | HISTogram |
CGMemory}

This command turns off an active channel, function, waveform memory, TDR
response, histogram, or color grade memory. The VIEW command turns them
on.

<N> An integer, 1 through 4.

Example This example turns off channel 1.

10 OUTPUT 707;":BLANK CHANNEL1"
20 END
9-5

Root Level Commands
Root Level Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
CDISplay

Command :CDISplay [CHANnel<N>]

This command clears the display and resets all associated measurements. If
the analyzer is stopped, all currently displayed data is erased. If the analyzer is
running, all of the data in active channels and functions is erased; however,
new data is displayed on the next acquisition. Waveform memories are not
erased. If a channel is specified as a parameter, only the displayed data from
that channel is cleared.

<N> An integer, 1 through 4.

Example This example clears the analyzer display.

10 OUTPUT 707;":CDISPLAY"
20 END

COMMents

Command :COMMents {LMODule | RMODule},"<comments_text>"

This command sets the comments field for the module. This field is used to
describe options included in the module, or for user comments about the mod-
ule.

<comments> Represents the ASCII string enclosed in quotation marks.

Example 10 OUTPUT 707;”:COMMENTS LMODULE”
20 END

Query :COMMents? {LMODule | RMODule}

The query returns a string with the comments field associated with the mod-
ule.

Returned Format [:COMMents] <string>

CREE (Clock Recovery Event Enable Register)

Command :CREE <mask>

This command sets a mask into the Clock Recovery Event Enable Register.

A “1” in a bit position enables the corresponding bit in the Clock Recovery
Event Register to set bit 7 in the Operation Status Register.
9-6

Root Level Commands
Root Level Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
<mask> The decimal weight of the enabled bits. Some of the useful mask values are
shown below.

Query :CREE?

The query returns the current decimal value in the Clock Recovery Event
Enable Register.

Returned Format [:CREE] <mask><NL>

CRER? (Clock Recovery Event Register)

Query :CRER?

This query returns the current value of the Clock Recovery Event Register as
a decimal number and also clears this register. Refer to “SPResent?” on
page 13-4 for more detailed information on receiver one and receiver two.

Bit 0 (UNLK) of the Clock Recovery Event Register is set when the clock
recovery module becomes unlocked or trigger loss has occurred for the
83494A family of modules.

Bit 1 (LOCK) of the Clock Recovery Event Register is set when the clock
recovery module becomes locked or a trigger capture has occurred for the
83494A family of modules.

Bit 2 (NSPR1) of the Clock Recovery Event Register is set when the clock
recovery module transitions to no longer detecting an optical signal on
receiver one.

Bit 3 (SPR1) of the Clock Recovery Event Register is set when the clock
recovery module transitions to detecting an optical signal on receiver one.

Bit 4 (NSPR2) of the Clock Recovery Event Register is set when the clock
recovery module transitions to no longer detecting an optical signal on
receiver two.

Enable Mask Value

Block all bits 0
Enable UNLK, block all others 1
Enable LOCK, block all others 2
Enable NSPR1, block all others 4
Enable SPR1, block all others 8
Enable NSPR2, block all others 16
Enable SPR2, block all others 32
9-7

Root Level Commands
Root Level Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
Bit 5 (SPR2) of the Clock Recovery Event Register is set when the clock
recovery module transitions to detecting an optical signal on receiver two.

Returned Format [:CRER] <value><NL>

DIGitize

Command :DIGitize {CHANnel<N> | FUNCtion<N> | RESPonse<N>}

This command invokes a special mode of data acquisition that is more efficient
than using the RUN command when using averaging in the Oscilloscope mode.
With the faster computations of the Agilent 86100B, the DIGitize command is
no longer significantly faster than the RUN and RUNTil commands.

The DIGitize command initializes the selected channels or functions, then it
acquires them according to the current analyzer settings. When the signal is
completely acquired (for example, when the specified number of averages
have been taken), the analyzer is stopped.

If you use the DIGitize command with channel, function, or response parame-
ters, only the specified channels, functions, or responses are acquired. To
speed up acquisition, the waveforms are not displayed and their display state
indicates “off.” Subsequent to the digitize operation, the display of the
acquired waveforms may be turned on for viewing, if desired. Other sources
are turned off and their data is invalidated.

If you use the DIGitize command with no parameters, the digitize operation is
performed on the channels or functions that were acquired with a previous
digitize, run, or single operation. In this case, the display state of the acquired
waveforms is not changed. Because the command executes more quickly with-
out parameters, this form of the command is useful for repetitive measure-
ment sequences. You can also use this mode if you want to view the digitize
results because the display state of the digitized waveforms is not affected.

Data acquired with the DIGitize command is placed in the normal channel,
function, or response.

Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, the full range of measurement and
math operators may be performed on them.
9-8

Root Level Commands
Root Level Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
See Chapter 7, “Sample Programs” for examples of how to use DIGitize and its
related commands.

<N> An integer, 1 through 4.

Example This example acquires data on channel 1 and function 2.

10 OUTPUT 707;":DIGITIZE CHANNEL1,FUNCTION2"
20 END

The ACQuire subsystem commands set up conditions such as TYPE and
COUNT for the next DIGitize command.

The WAVeform subsystem commands determine how the data is transferred
out of the analyzer, and how to interpret the data.

LER? (Local Event Register)

Query :LER?

This query reads the Local (LCL) Event Register. A “1” is returned if a remote-
to-local transition has taken place due to the front-panel Local key being
pressed. A “0” is returned if a remote-to-local transition has not taken place.

Returned Format [:LER] {1 | 0}<NL>

Example The following example checks to see if a remote-to-local transition has taken
place and places the result in the string variable, Answer$, and then prints the
result to the controller’s screen.

10 Dim Answer$[50] !Dimension variable
20 OUTPUT 707;":LER?"
30 ENTER 707; Answer$
40 PRINT Answer$
50 END

After the LCL Event Register is read, it is cleared.

Once this bit is set, it can only be cleared by reading the Status Byte, reading
the register with the LER? query, or sending a *CLS common command.

DIGitize Command Restrictions

The DIGitize command is not intended for use with limit tests. Use the RUN and RUNTil
commands instead. The stop condition for the RUN command is specified by commands
ACQuire:RUNTil on page 11-6, MTEST:RUNTil on page 22-11, or LTEST on page 20-6.
9-9

Root Level Commands
Root Level Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
LTEE (Limit Test Event Enable register)

Command :LTEE <mask>

This command sets a mask into the Limit Test Event Enable register.

A “1” in a bit position enables the corresponding bit in the Limit Event Regis-
ter to set bit 8 in the Operation Status Register.

<mask> The decimal weight of the enabled bits. Only bits 0 and 1, of the Limit Test
Event Register, are used at this time. The useful mask values are shown in the
following table.

Query :LTEE?

The query returns the current decimal value in the Limit Test Event Enable
Register.

Returned Format [:LTEE] <mask><NL>

LTER? (Limit Test Event Register)

Query :LTER?

This query returns the current value of the Limit Test Event Register as a dec-
imal number and also clears this register.

Bit 0 (COMP) of the Limit Test Event Register is set when the Limit Test com-
pletes. The Limit Test completion criteria are set by the LTESt:RUN com-
mand.

Bit 1 (FAIL) of the Limit Test Event Register is set when the Limit Test fails.
Failure criteria for the Limit Test are defined by the LTESt:FAIL command.

Returned Format [:LTER] <value><NL>

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3
9-10

Root Level Commands
Root Level Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
MODel?

Query :MODel? {FRAMe | LMODule | RMODule}

This query returns the Agilent model number for the analyzer frame or mod-
ule.

Returned Format [:MODel] <string>

<string> A six-character alphanumeric model number in quotation marks. Output is
determined by header and longform status as in Table 9-1.

Example This example places the model number of the frame in a string variable,
Model$, then prints the contents of the variable on the computer's screen.

10 Dim Model$[13] !Dimension variable
20 OUTPUT 707;":Model? FRAME"
30 ENTER 707; Model$
40 PRINT Model$
50 END

MTEE (Mask Test Event Enable Register)

Command :MTEE <mask>

This command sets a mask into the Mask Event Enable register.

A “1” in a bit position enables the corresponding bit in the Mask Test Event
Register to set bit 10 in the Operation Status Register.

<mask> The decimal weight of the enabled bits. Only bits 0 and 1, of the Mask Test
Event Register, are used at this time. The useful mask values are shown in the
following table.

Table 9-1. Model? Returned Format

HEADER LONGFORM RESPONSE

ON OFF ON OFF
X X 86100A
X X 86100A

X X :MOD 86100A
X X :MODEL 86100A
9-11

Root Level Commands
Root Level Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
Query :MTEE?

The query returns the current decimal value in the Mask Event Enable Regis-
ter.

Returned Format [:MTEE] <mask><NL>

MTER? (Mask Test Event Register)

Query :MTER?

This query returns the current value of the Mask Test Event Register as a dec-
imal number and also clears this register.

Bit 0 (COMP) of the Mask Test Event Register is set when the Mask Test com-
pletes.

Bit 1 (FAIL) of the Mask Test Event Register is set when the Mask Test fails.
This will occur whenever any sample is recorded within any region defined in
the mask.

Returned Format [:MTER] <value><NL>

OPEE

Command :OPEE <mask>

This command sets a mask in the Operation Status Enable register. Each bit
that is set to a “1” enables that bit to set bit 7 in the Status Byte Register, and
potentially causes an SRQ to be generated. Bit 5, Wait for Trig, is used. Other
bits are reserved.

<mask> The decimal weight of the enabled bits.

Query :OPEE?

The query returns the current value contained in the Operation Status Enable
register as a decimal number.

Returned Format [:OPEE] <value><NL>

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3
9-12

Root Level Commands
Root Level Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
OPER?

Query :OPER?

This query returns the value contained in the Operation Status Register as a
decimal number and also clears this register. This register is the summary of
the CLCK bit (bit 7), LTEST bit (bit 8), ACQ bit (bit 9) and MTEST bit
(bit 10).

The CLCK bit is set by the Clock Recovery Event Register and indicates that a
clock event has occurred. The LTEST bit is set by the Limit Test Event Regis-
ter and indicates that a limit test has failed or completed. The ACQ bit is set
by the Acquisition Event Register and indicates that an acquisition limit test
has completed. The MTEST bit is set by the Mask Test Event Register and
indicates that a mask limit test has failed or completed.

Returned Format [:OPER] <value><NL>

PRINt

Command :PRINt

This command outputs a copy of the screen to a printer or other device desti-
nation specified in the HARDcopy subsystem. You can specify the selection of
the output and the printer using the HARDcopy subsystem commands.

Example This example outputs a copy of the screen to a printer or a disk file. See *OPC
(Operation Complete) command on page 8-7 for synchronization of PRINT
operations.

10 OUTPUT 707;”:PRINT”
20 END

RECall:SETup

Command :RECall:SETup <setup_memory_num>

This command recalls a setup that was saved in one of the analyzer’s setup
memories. You can save setups using either the STORe:SETup command or
the front panel.

<setup_memory_num> Setup memory number, an integer, 0 through 9.

Example This command recalls a setup from setup memory 2.

10 OUTPUT 707;":RECall:SETup 2"
9-13

Root Level Commands
Root Level Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
20 END

RUN

Command :RUN [CHANnel<N>]

This command starts the analyzer running. When the analyzer is running, it
acquires waveform data according to its current settings. Acquisition runs
repetitively until the analyzer receives a correspondent STOP command.

<N> An integer, 1 through 4.

Example This example causes the analyzer to acquire data repetitively for all active
channels.

10 OUTPUT 707;”:RUN”
20 END

SERial (Serial Number)

Command :SERial {FRAMe | LMODule | RMODule},<string>

This command sets the serial number for the analyzer frame or module. The
serial number is entered by Agilent Technologies. Therefore, setting the serial
number is not normally required unless the analyzer is serialized for a differ-
ent application.

<string> A ten-character alphanumeric serial number enclosed with quotation marks.

The analyzer’s serial number is part of the string returned for the *IDN? query,
described in Chapter 8, “Common Commands”.

Example This example sets the serial number for the analyzer's frame to “1234A56789”.

10 OUTPUT 707;":SERIAL FRAME,""1234A56789"""
20 END

Query :SERial? {FRAMe | LMODule | RMODule}

Command is Subordinate to Ongoing Limit Tests

The execution of the RUN command is subordinate to the status of ongoing limit tests.
(see commands ACQuire:RUNTil on page 11-5, MTEST:RUNTil on page 22-10, and
LTESt:RUNTil on page 20-6). The RUN command will not restart a full data acquisiton if
the stop condition for a limit test has been met.
9-14

Root Level Commands
Root Level Commands

book.book Page 15 Friday, July 12, 2002 1:51 PM
The query returns the current serial number string for the specified frame or
module.

Returned Format [:SERial] <string><NL>

Example 10 Dim Serial$[50] !Dimension variable
20 OUTPUT 707;":SERIAL? FRAME"
30 ENTER 707; Serial$
40 PRINT SERIAL$
50 END

SINGle

Command :SINGle [CHANnel<N>]

This command causes the analyzer to make a single acquisition when the next
trigger event occurs. It should be followed by *WAI, *OPC, or *OPC? in order
to synchronize data acquisition with remote control.

Example This example sets up the analyzer to make a single acquisition when the next
trigger event occurs.

10 OUTPUT 707;":SINGLE"
20 END

STOP

Command :STOP [CHANnel<N>]

This command causes the analyzer to stop acquiring data for the active dis-
play. If no channel is specified, all active channels are affected.To restart the
acquisition, use the RUN or SINGle command.

<N> An integer, 1 through 4.

Example This example stops the current data acquisition on all active channels.

10 OUTPUT 707;":STOP"
20 END

STORe:SETup

Command :STORe:SETup <setup_memory_num>

This command saves the current analyzer setup in one of the setup memories.

<setup_memory_num> Setup memory number, an integer, 0 through 9.
9-15

Root Level Commands
Root Level Commands

book.book Page 16 Friday, July 12, 2002 1:51 PM
STORe:WAVeform

Command :STORe:WAVeform <source>,<destination>

This command copies a channel, function, stored waveform, or TDR response
to a waveform memory or to color grade memory. The parameter preceding
the comma specifies the source and can be any channel, function, response,
color grade memory, or waveform memory. The parameter following the
comma is the destination, and can be any waveform memory.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<destination> {WMEMory<N> | CGMemory}

<N> An integer, 1 through 4.

Example This example copies channel 1 to waveform memory 3.

10 OUTPUT 707;":STORE:WAVEFORM CHANNEL1,WMEMORY3"
20 END

TER? (Trigger Event Register)

Query :TER?

This query reads the Trigger Event Register. A “1” is returned if a trigger has
occurred. A “0” is returned if a trigger has not occurred.

Returned Format [:TER] {1 | 0}<NL>

Example This example checks the current status of the Trigger Event Register and
places the status in the string variable, Current$, then prints the contents of
the variable to the computer's screen.

10 DIM Current$[50] !Dimension variable
20 OUTPUT 707;":TER?"
30 ENTER 707;Current$
40 PRINT Current$
50 END

Once this bit is set, you can clear it only by reading the register with the TER?
query, or by sending a *CLS common command. After the Trigger Event Reg-
ister is read, it is cleared.

Sources for Color Grade Memory

Only channels or functions can be sources for color grade memory.
9-16

Root Level Commands
Root Level Commands

book.book Page 17 Friday, July 12, 2002 1:51 PM
UEE (User Event Enable register)

Command :UEE <mask>

This command sets a mask into the User Event Enable register. A “1” in a bit
position enables the corresponding bit in the User Event Register to set bit 1
in the Status Byte Register and, thereby, potentially cause an SRQ to be gener-
ated. Only bit 0 of the User Event Register is used at this time; all other bits
are reserved.

<mask> The decimal weight of the enabled bits.

Query :UEE?

The query returns the current decimal value in the User Event Enable regis-
ter.

Returned Format [:UEE] <mask><NL>

UER? (User Event Register)

Query :UER?

This query returns the current value of the User Event Register as a decimal
number and also clears this register. Bit 0 (LCL - Remote/Local change) is
used. All other bits are reserved.

Returned Format [:UER] <value><NL>

VIEW

Command :VIEW {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N> | HISTogram |
CGMemory}

This command turns on a channel, function, waveform memory, TDR
response, histogram, or color grade memory.

<N> An integer, 1 through 4.

Example This example turns on channel 1.

10 OUTPUT 707;":VIEW CHANNEL1"
20 END

See Also The BLANk command turns off a channel, function, waveform memory, TDR
response, histogram, or color grade memory.
9-17

Root Level Commands
Root Level Commands

book.book Page 18 Friday, July 12, 2002 1:51 PM
9-18

book.book Page 1 Friday, July 12, 2002 1:51 PM
10

DATE 10-2
DSP 10-3
ERRor? 10-3
HEADer 10-5
LONGform 10-6
MODE 10-7
SETup 10-7
TIME 10-9
System Commands

System Commands
System Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
System Commands

SYSTem subsystem commands control the way in which query responses are
formatted, send and receive setup strings, and enable reading and writing to
the advisory line of the analyzer. You can also set and read the date and time in
the analyzer using the SYSTem subsystem commands.

DATE

Command :SYSTem:DATE <day>,<month>,<year>

This command sets the date in the analyzer, and is not affected by the *RST
common command.

<day> Specifies the day in the format <1. . . .31>.

<month> Specifies the month in the format <1, 2,12> | <JAN, FEB, MAR>.

<year> Specifies the year in the format <yyyy> | <yy>. The values range from
1992 to 2035.

Example The following example sets the date to July 1, 1997.

10 OUTPUT 707;":SYSTEM:DATE 7,1,97"
20 END

Query :SYSTem:DATE?

The query returns the current date in the analyzer.

Returned Format [:SYSTem:DATE] <day> <month> <year>><NL>

Example The following example queries the date.

10 DIM Date$ [50]
20 OUTPUT 707;":SYSTEM:DATE?"
30 ENTER 707; Date$
40 PRINT Date$
10-2

System Commands
System Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
DSP

Command :SYSTem:DSP <string>

This command writes a quoted string, excluding quotation marks, to the advi-
sory line of the instrument display. If you want to clear a message on the advi-
sory line, send a null (empty) string.

<string> An alphanumeric character array up to 92 bytes long.

Example The following example writes the message, “Test 1” to the advisory line of the
analyzer.

10 OUTPUT 707;":SYSTEM:DSP ""Test 1"""
20 END

Query :SYSTem:DSP?

The query returns the last string written to the advisory line. This may be a
string written with a SYSTem:DSP command, or an internally generated advi-
sory.

The string is actually read from the message queue. The message queue is
cleared when it is read. Therefore, the displayed message can only be read
once over the bus.

Returned Format [:SYSTem:DSP] <string><NL>

Example The following example places the last string written to the advisory line of the
analyzer in the string variable, Advisory$. Then, it prints the contents of the
variable to the controller's screen.

10 DIM Advisory$[89] !Dimension variable
20 OUTPUT 707;":SYSTEM:DSP?"
30 ENTER 707;Advisory$
40 PRINT Advisory$
50 END

ERRor?

Query :SYSTem:ERRor? [{NUMBer | STRing}]

This query outputs the next error number in the error queue over the GPIB.
When either NUMBer or no parameter is specified in the query, only the
numeric error code is output. When STRing is specified, the error number is
output followed by a comma and a quoted string describing the error.
10-3

System Commands
System Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Table 10-1 on page 10-4 lists the error numbers and their corresponding error
messages. The error messages are also listed in Chapter 30, “Error Messages”,
where possible causes are given for each message.

Returned Format [:SYSTem:ERRor] <error_number>[,<quoted_string>]<NL>

<error_number> A numeric error code.

<quoted_string> A quoted string describing the error.

Example The following example reads the oldest error number and message in the error
queue into the string variable, Condition$, then prints the contents of the vari-
able to the controller's screen.

10 DIM Condition$[64] !Dimension variable
20 OUTPUT 707;":SYSTEM:ERROR? STRING"
30 ENTER 707;Condition$
40 PRINT Condition$
50 END

This analyzer has an error queue that is 30 errors deep and operates on a first-
in, first-out (FIFO) basis. Successively sending the SYSTem:ERRor query
returns the error numbers in the order that they occurred until the queue is
empty. When the queue is empty, this query returns headers of 0, “No error.”
Any further queries return zeros until another error occurs. Note that front-
panel generated errors are also inserted in the error queue and the Event Sta-
tus Register.

See Also Chapter 30, “Error Messages” for more information on error messages and
their possible causes.

Send *CLS Before Other Commands or Queries

Send the *CLS common command to clear the error queue and Event Status Register
before you send any other commands or queries.

Table 10-1. Error Messages

Error
Number Description

Error
Number Description

0 No error −158 String data not allowed
−100 Command error −160 Block data error
−101 Invalid character −161 Invalid block data
−102 Syntax error −168 Block data not allowed
−103 Invalid separator −170 Expression error
10-4

System Commands
System Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
HEADer

Command :SYSTem:HEADer {{ON | 1} | {OFF | 0}}

This command specifies whether the instrument will output a header for
query responses. When SYSTem:HEADer is set to ON, the query responses
include the command header.

Example The following example sets up the analyzer to output command headers with
query responses.

10 OUTPUT 707;":SYSTEM:HEADER ON"
20 END

Query :SYSTem:HEADer?

The query returns the state of the SYSTem:HEADer command.

Returned Format [:SYSTem:HEADer] {1 | 0}<NL>

Example This example examines the header to determine the size of the learn string.
Memory is then allocated to hold the learn string before reading it. To output
the learn string, the header is sent, then the learn string and the EOF.

10 DIM Header$[64]
20 OUTPUT 707;"syst:head on"

−104 Data type error −171 Invalid expression
−105 GET not allowed −178 Expression data not allowed
−108 Parameter not allowed −200 Execution error
−109 Missing parameter −222 Data out of range
−112 Program mnemonic too long −223 Too much data
−113 Undefined header −224 Illegal parameter value
−121 Invalid character in number −310 System error
−123 Numeric overflow −350 Too many errors
−124 Too many digits −400 Query error
−128 Numeric data not allowed −410 Query INTERRUPTED
−131 Invalid suffix −420 Query UNTERMINATED
−138 Suffix not allowed −430 Query DEADLOCKED
−141 Invalid character data −440 Query UNTERMINATED

after indefinite response
−144 Character data too long

Table 10-1. Error Messages

Error
Number

Description
Error
Number

Description
10-5

System Commands
System Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
30 OUTPUT 707;":syst:set?"
40 More_chars: !
50 ENTER 707 USING "#,A";This_char$
60 Header$=Header$&This_char$
70 IF This_char$<>"#" THEN More_chars
80 !
90 ENTER 707 USING "#,D";Num_of_digits
100 ENTER 707 USING "#,"&VAL$(Num_of_digits)&"D";Set_size
110 Header$=Header$&"#"&VAL$(Num_of_digits)&VAL$(Set_size)
120!
130 ALLOCATE INTEGER Setup(1:Set_size)
140 ENTER 707 USING "#,B";Setup(*)
150 ENTER 707 USING "#,A";Eof$
160 !
170 OUTPUT 707 USING "#,-K";Header$
180 OUTPUT 707 USING "#,B";Setup(*)
190 OUTPUT 707 USING "#,A";Eof$
200

LONGform

Command :SYSTem:LONGform {ON | 1 | OFF | 0}

This command specifies the format for query responses. If the LONGform is
set to OFF, command headers and alpha arguments are sent from the instru-
ment in the short form (abbreviated spelling). If LONGform is set to ON, the
whole word is output.

This command has no effect on input headers and arguments sent to the
instrument. Headers and arguments may be sent to the instrument in either
the long form or short form, regardless of the current state of the LONGform
command.

Example The following example sets the format for query response from the instrument
to the short form (abbreviated spelling).

10 OUTPUT 707;":SYSTEM:LONGFORM OFF"
20 END

Query :SYSTem:LONGform?

The query returns the current state of the SYSTem:LONGform command.

Turn Headers Off when Returning Values to Numeric Variables

Turn headers off when returning values to numeric variables. Headers are always off for
all common command queries because headers are not defined in the IEEE 488.2 stan-
dard.
10-6

System Commands
System Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
Returned Format [:SYSTem:LONGform] {0 | 1}<NL>

Example The following example checks the current format for query responses from
the oscilloscope and places the result in the string variable, Result$, then
prints the contents of the variable to the controller’s screen.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":SYSTEM:LONGFORM?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

MODE

Command :SYSTem:MODE {EYE | OSCilloscope | TDR}

This command sets the system mode.

Example The following example sets the instrument mode to Eye/Mask mode.

10 OUTPUT 707;":SYSTEM:MODE EYE"
20 END

Query :SYSTem:MODE?

The query returns the current state of the SYSTem:MODE command.

Returned Format [:SYSTem:MODE] {EYE | OSC | TDR}

Example The following example checks the current instrument mode of the analyzer,
and places the result in the string variable, Result$. Then, it prints the con-
tents of the variable to the controller's screen.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":SYSTEM:MODE?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

SETup

Command :SYSTem:SETup <binary_block_data>

Changing to Eye/Mask Mode

Changing to Eye/Mask mode using the SYSTem:MODE command, will turn off all active
channels except the lowest numbered channel.
10-7

System Commands
System Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
This command sets up the instrument as defined by the data in the setup
string from the controller.

<binary_block_data> A string, consisting of bytes of setup data. The number of bytes is a dynamic
number that is read and allocated by the analyzer’s software.

Example The following example sets up the instrument as defined by the setup string
stored in the variable, Set$.

10 OUTPUT 707 USING "#,-K";":SYSTEM:SETUP ";Set$
20 END

Query :SYSTem:SETup?

The query outputs the instrument's current setup to the controller in binary
block data format as defined in the IEEE 488.2 standard.

Returned Format [:SYSTem:SETup] #NX...X<setup data string><NL>

The first character in the setup data string is a number added for disk opera-
tions.

Example The following example stores the current instrument setup in the string vari-
able, Set$.

10 DIM Set$[15000] !Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
30 OUTPUT 707;":SYSTEM:SETUP?"
40 ENTER 707 USING "-K";Set$
50 END

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOI
sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no
leading or trailing blanks.

HP BASIC Image Specifiers

−K is an HP BASIC image specifier which places the block data in a string, including car-
riage returns and line feeds, until EOI is true, or when the dimensioned length of the string
is reached.
10-8

System Commands
System Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
TIME

Command :SYSTem:TIME <hour>,<minute>,<second>

This command sets the time in the instrument, and is not affected by the *RST
common command.

<hour> 0. . . .23

<minute> 0. . . .59

<second> 0. . . .59

Example 10 OUTPUT 707;":SYSTEM:TIME 10,30,45"
20 END

Query :SYSTem:TIME?

The query returns the current time in the instrument.

Returned Format [:SYSTem:TIME] <hour>,<minute>,<second>

SYSTem:SETup Can Operate Just Like *LRN

When headers and LONGform are on, the SYSTem:SETup query operates the same as the
*LRN query in the common commands. Otherwise, *LRN and SETup are not interchange-
able.
10-9

System Commands
System Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
10-10

book.book Page 1 Friday, July 12, 2002 1:51 PM
11

AVERage 11-2
BEST 11-2
COUNt 11-3
LTESt 11-4
POINts 11-4
RUNTil 11-5
SSCReen 11-6
SSCReen:AREA 11-8
SSCReen:IMAGe 11-8
SWAVeform 11-9
SWAVeform:RESet 11-10
Acquire Commands

Acquire Commands
Acquire Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Acquire Commands

The ACQuire subsystem commands set up conditions for acquiring waveform
data, including the DIGitize root level command. The commands in this sub-
system select the number of averages and the number of data points. This
subsystem also includes commands to set limits on how much data is
acquired, and specify actions to execute when acquisition limits are met.

AVERage

Command :ACQuire:AVERage {{ON | 1} | {OFF | 0}}

This command enables or disables averaging. When ON, the analyzer acquires
multiple data values for each time bucket, and averages them. When OFF,
averaging is disabled. To set the number of averages, use the :ACQuire:COUNt
command described later in this chapter.

Example This example turns averaging on.

10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

Query :ACQuire:AVERage?

Returned Format [:ACQuire:AVERage] {1 | 0}<NL>

BEST

Command :ACQuire:BEST {THRuput | FLATness}

When averaging is enabled with ACQuire:AVERage, the FLATness option
improves the step flatness by using a signal processing algorithm within the
instrument. You should use this option when performing TDR measurements
or when step flatness is important. The THRuput option improves the instru-
ment’s throughput and should be used whenever best flatness is not required.

Example The following example sets the instrument to best step flatness.

10 OUTPUT 707;":ACQUIRE:BEST FLATNESS"
20 END
11-2

Acquire Commands
Acquire Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
Query :ACQuire:BEST?

The query returns the current acquisition algorithm setting.

Returned Format [:ACQuire:BEST] {THRuput | FLATness}<NL>

Example The following example obtains the current setting of the acquisition algorithm
from the instrument, stores it in the variable, Best$, then prints the contents
of the variable to the controller’s screen.

10 DIM Best$[50] !Define variable
20 OUTPUT 707;":ACQUIRE:BEST?"
30 ENTER 707;Best$
40 PRINT Best$
50 END

COUNt

Command :ACQuire:COUNt <value>

This command sets the number of averages for the waveforms. In the AVER-
age mode, the ACQuire:COUNt command specifies the number of data values
to be averaged for each time bucket before the acquisition is considered com-
plete for that time bucket.

<value> An integer, 1 to 4096, specifying the number of data values to be averaged.

Example The following example specifies that 16 data values must be averaged for each
time bucket to be considered complete.

10 OUTPUT 707;":ACQUIRE:COUNT 16"
20 END

Query :ACQuire:COUNt?

The query returns the currently selected count value.

Returned Format [:ACQuire:COUNt] <value><NL>

<value> An integer, 1 to 4096, specifying the number of data values to be averaged.

Example The following example checks the currently selected count value and places
that value in the string variable, Result$. Then the program prints the con-
tents of the variable to the controller’s screen.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:COUNT?"
30 ENTER 707;Result$
40 PRINT Result$
50 END
11-3

Acquire Commands
Acquire Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
LTESt

Command :ACQuire:LTESt [ALL | INDividual]

This command sets the mode for acquisition limit tests. The default is ALL.
When it is set to INDividual, the :ACQuire:RUNtil command can be used with
the optional channel parameter to specify runtil conditions for each channel
individually. When it is set to ALL, acquisition limit tests are performed on all
channels simultaneously.

Example The following example sets mode for acquisition limit tests to individual.

10 OUTPUT 707;":ACQUIRE:LTEST INDIVIDUAL"
20 END

Query :ACQuire:LTESt?

Returned Format [:ACQuire:LTESt] {ALL | IND} <NL>

Example The following example retrieves the made for acquisition limit tests and places
the value in the string variable, Result.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:LTEST?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

POINts

Command :ACQuire:POINts {AUTO | <points_value>}

This command sets the requested memory depth for an acquisition. Always
query the points value with the WAVeform:POINts query or WAVeform:PRE-
amble to determine the actual number of acquired points.

You can set the points value to AUTO, which allows the analyzer to select the
number of points based upon the sample rate and time base scale.

<points_value> An integer representing the memory depth. The points value range is 16 to
4096 points.

Example This example sets the memory depth to 500 points.

10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

Query :ACQuire:POINts?

The query returns the requested memory depth.
11-4

Acquire Commands
Acquire Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
Returned Format [:ACQuire:POINts] <points_value><NL>

Example This example checks the current setting for memory depth and places the
result in the string variable, Length$. Then the program prints the contents of
the variable to the controller’s screen.

10 DIM Length$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:POINTS?"
30 ENTER 707;Length$
40 PRINT Length$
50 END

See Also :WAVeform:DATA

RUNTil

Command :ACQuire:RUNTil {OFF | WAVeforms,<number_of_waveforms> | SAMples,
<number_of_samples>}[,CHANnel<N>]

This command selects the acquisition run until mode. The acquisition may be
set to run until n waveforms or n samples have been acquired, or to run for-
ever (OFF).If more than one run until criteria is set, then the instrument will
act upon the completion of whichever run until criteria is achieved first.

<number_of_
waveforms

An integer, 1 through 231–1.

<number_of_samples> An integer, 1 through 231–1.

<N> An integer, 1 through 4.

Example 1 The following example specifies that the acquisition runs until 200 samples
have been obtained.

10 OUTPUT 707;”:ACQuire:RUNTIL SAMPLES,200”
20 END

Example 2 The following example specifies that Channel 1 acquisition runs until
300 waveforms have been obtained.

write_IO (“:ACQuire:LTESt IND”);

Channel Parameter can Specify RUNTil Conditions

The optional channel parameter can be set to specify RUNTil conditions on each channel
individually when the :ACQuire:LTESt command is set to INDividual. If the acquisition
limit test mode is set to INDividual and the :ACQuire:RUNTil OFF command is sent with
no channel specified, all channels will be set to OFF. To turn off acquisition limit tests for
an individual channel, you must specify the channel.
11-5

Acquire Commands
Acquire Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
write_IO (“:ACQuire:RUNTil WAVeforms, 300, CHANnel1”);

Query :ACQuire:RUNTil? [CHANnel<N>]

The query returns the currently selected run until state. If the channel param-
eter is specified, the run until state of the specified channel is returned.

Returned Format [:ACQuire:RUNTil] {OFF | WAVeform, <n waveforms> | SAMPles, <n samples>}<NL>

Example The following example returns the result of the run until query and prints it to
the controller’s screen.

10 DIM Runt$[50]
20 OUTPUT 707;”:ACQuire:RUNTIL?”
30 ENTER 707;Runt$
40 PRINT Runt$
50 END

SSCReen

Command :ACQuire:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen when the acquisition limit is
reached.

OFF Turns off the save action.

DISK A different set of commands is provided to control the print to disk.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, a
default filename is assigned. This filename will be AcqLimitScreenX.bmp,
where X is an incremental number assigned by the instrument.

The filename field encodes the network path and the directory in which the
file will be saved, as well as the file format that will be used. The following is a
list of valid filenames.

Save Screen Options

The save screen options established by the commands ACQuire:SSCReen DISK,
ACQuire:SSCReen:AREA, and ACQuire:SSCReen:IMAG are stored in the instrument’s
memory and will be employed in consecutive save screen operations, until changed by
the user. This includes the <filename> parameter for the ACQuire:SSCReen DISK com-
mand. If the results of consecutive limit tests must be stored in different files, omit the
<filename> parameter and use the default filename instead. Each screen image will be
saved in a different file named AcqLimitScreenX.bmp, where X is an incremental number
assigned by the instrument.
11-6

Acquire Commands
Acquire Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
If a filename is specified without a path, the default path will be
C:\User Files\screen images. The default file type is a bitmap
(.bmp). The following graphics formats are available by specifying a file exten-
sion: PCX files (.pcx), EPS files (.eps), Postscript files (.ps), JPEG files (.jpg),
TIFF files (.tif), and GIF files (.gif).

Example The following example saves a copy of the screen to the disk when acquisition
limit is reached. Additional disk-related controls are set using the
SSCReen:AREA and SSCReen:IMAGe commands.

10 OUTPUT 707;”:ACQUIRE:SSCREEN DISK”
20 END

Query :ACQuire:SSCReen?

The query returns the current state of the SSCReen command.

Returned Format [:ACQuire:SSCReen] {OFF | DISK [,<filename>]}<NL>

Example The following example returns the destination of the save screen when acqui-
sition limit is reached and prints the result to the controller’s screen.

10 DIM SSCR$[50]
20 OUTPUT 707;”:ACQUIRE:SSCREEN?”

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” C:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.

.gif, .tif, and .jpg Formats

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user
should not modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Indepen-
dent JPEG Group.
11-7

Acquire Commands
Acquire Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA

Command :ACQuire:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when
the run until condition is met. When you select GRATicule, only the graticule
area of the screen is saved (this is the same as choosing Waveforms Only in
the Specify Report Action for acquisition limit test dialog box). When you
select SCReen, the entire screen is saved.

Example This example selects the graticule for saving.

10 OUTPUT 707;":ACQUIRE:SSCREEN:AREA GRATICULE"
20 END

Query :ACQuire:SSCReen:AREA?

The query returns the current setting for the area of the screen to be saved.

Returned Format [:ACQuire:SSCReen:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be printed in the
string variable, Selection$, then prints the contents of the variable to the com-
puter's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe

Command :ACQuire:SSCReen:IMAGe {NORMal | INVert | MONochrome}

This command saves the screen image to disk normally, inverted, or in mono-
chrome. IMAGe INVert is the same as choosing Invert Background Waveform
Color in the Specify Report Action for acquisition limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":ACQuire:SSCReen:IMAGE NORMAL"
20 END

Query :ACQuire:SSCReen:IMAGe?

The query returns the current image setting.
11-8

Acquire Commands
Acquire Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
Returned Format [:ACQuire:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>

Example This example places the current setting for the image in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:SSCREEN:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SWAVeform

Command :ACQuire:SWAVeform <source>, <destination> [,<filename>[, <format>]]

This command saves waveforms from a channel, function, TDR response, or
waveform memory when the number of waveforms or samples as specified in
the limit test is acquired. Each waveform source can be individually specified,
allowing multiple channels, responses, or functions to be saved to disk or
waveform memories. Setting a particular source to OFF removes any wave-
form save action from that source.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<destination> {OFF | WMEMory<N>| DISK}

<filename> An ASCII string enclosed in quotes. If no filename is specified, a default file-
name will be assigned. The default filenames will be AcqLimitChN_X,
AcqLimitFnN_X, AcqLimitMemN_X or AcqLimitRspN_X, where X is an
incremental number assigned by the instrument.

If a specified filename contains no path, the default path will be C:\User
Files\waveforms.

<format> {TEXT [,YVALues | VERBose] | INTernal}

Where INTernal is the default format, and VERBose is the default format for
TEXT.

Example The following example turns off the saving of waveforms from channel 1.

10 OUTPUT 707;”:ACQUIRE:SWAVEFORM CHAN1,OFF”

Storing Consecutive Limit Tests

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.
11-9

Acquire Commands
Acquire Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
20 END

Query :ACQuire:SWAVeform? <source>

The query returns the current state of the :ACQuire:SWAVeform command.

Returned Format [:ACQuire:SWAVeform]<source>, <destination> [,<filename>[,<format>]]<NL>

Example The following example returns the current parameters for saving waveforms.

10 DIM SWAV$[50]
20 OUTPUT 707;”:ACQUIRE:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet

Command :ACQuire:SWAVeform:RESet

This command sets the save destination for all waveforms to OFF. Setting a
source to OFF removes any waveform save action from that source. This is a
convenient way to turn off all saved waveforms if it is unknown which are
being saved.

Example 10 OUTPUT 707;”:ACQuire:SWAVeform:RESet”
20 END
11-10

book.book Page 1 Friday, July 12, 2002 1:51 PM
12

Mainframe Calibration 12-2
Module Calibration 12-2
Probe Calibration 12-4
Calibration Commands 12-5

CANCel 12-5
CONTinue 12-5
ERATio:DLEVel? 12-5
ERATio:STARt 12-6
ERATio:STATus? 12-6
FRAMe:LABel 12-6
FRAMe:STARt 12-7
FRAMe:TIME? 12-7
MODule:LRESistance 12-7
MODule:OCONversion? 12-8
MODule:OPOWer 12-8
MODule:OPTical 12-8
MODule:OWAVelength 12-9
MODule:STATus? 12-9
MODule:TIME? 12-9
MODule:VERTical 12-10
OUTPut 12-10
PROBe 12-11
RECommend? 12-11
SAMPlers 12-12
SDONe? 12-12
SKEW 12-13
SKEW:AUTO 12-13
STATus? 12-14

Calibration Procedure 12-14
Calibration Commands

Calibration Commands
Calibration Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Calibration Commands

This section briefly explains the calibration of the 86100A/B digital communi-
cations analyzer. It is intended to give you and the calibration lab personnel an
understanding of the calibration procedure and how the calibration subsystem
is intended to be used. Also, this section acquaints you with the terms used in
this chapter, help screens, and data sheets.

A calibration procedure is included at the end of this chapter.

Mainframe Calibration

Mainframe calibration establishes calibration factors for the analyzer. These
factors are stored in the analyzer's hard disk. You initiate the calibration from
the Calibration menu or by sending the :CALibrate:FRAMe:STARt command.

You should calibrate the analyzer mainframe periodically (at least annually),
or if the ambient temperature since the last calibration has changed more than
±5°C. The temperature change since the last calibration is shown on the cali-
bration status screen which is found under the Mainframe and Skew tab on
the All Calibrations dialog box. It is the line labeled:

Cal ∆T ____________ °C.

See Also The Service Guide has more details about the mainframe calibration.

Module Calibration

You initiate a module calibration from the Modules tab on the
All Calibrations dialog box or by sending the :CALibrate:MODule:VERTical
command.

Module calibration, also known as vertical calibration, is used to enhance the
measurement precision of the instrument. It is recommended you routinely
perform this calibration for best measurement accuracy.
12-2

Calibration Commands
Module Calibration

book.book Page 3 Friday, July 12, 2002 1:51 PM
When a module calibration is performed, the instrument establishes calibra-
tion factors for the module. The calibration factors compensate for imperfec-
tions in the measurement system, such as variations due to the ambient
temperature. This results in the best instrument precision. The module cali-
bration factors are valid only for the mainframe and slot in which the module
was calibrated. You can install the module in the slots provided for Channels 1
and 2, or for Channel 3 and 4.

The module calibration is self-contained so the instrument does not require an
external equipment setup. In fact, the instrument will display a message box
instructing you to remove or disable all inputs to the module to be calibrated.
The duration of the calibration is typically between 60 and 90 seconds.

A module calibration is recommended when:

• the instrument power has been cycled

• a module has been removed and then reinserted since the last calibration

• a change in the temperature of the module exceeds 5°C compared to the tem-
perature of the last module calibration (∆T > 5°C)

• The time since the last calibration has exceeded 10 hours

Let the Module Warm Up First

In order for the calibration to be accurate, the temperature of the module must reach
equilibrium prior to performing the calibration.

Affect of Reinserting the Module

Reinserting the module into the mainframe can affect the electrical connections, which
in turn can affect the calibration accuracy.

∆T Value

A positive value for ∆T indicates how many degrees warmer the current module temper-
ature is compared to the temperature of the module at the time of the last module cali-
bration.
12-3

Calibration Commands
Probe Calibration

book.book Page 4 Friday, July 12, 2002 1:51 PM
C A U T I O N The input circuits can be damaged by electrostatic discharge (ESD). Avoid
applying static discharges to the front-panel input connectors. Momentarily
short the center and outer conductors of coaxial cables prior to connecting
them to the front-panel inputs. Before touching the front-panel input
connectors be sure to first touch the frame of the instrument. Be sure the
instrument is properly earth-grounded to prevent buildup of static charge.
Wear a wrist-strap or heel-strap.

Probe Calibration

The probe calibration is initiated from the Probe tab on the “Calibrate/All Cali-
brations” dialog or by sending either the :CALibrate:PROBe command or the
:CHANnel<N>:PROBe:CALibrate command.

The probe calibration allows the instrument to identify the offset and the gain,
or loss, of specific probes that are connected to an electrical channel of the
instrument. Those factors are then applied to the calibration of that channel.
The instrument calibrates the vertical scale and offset based on the voltage
measured at the tip of the probe or the cable input.

Typically probes have standard attenuation factors, such as divide by 10,
divide by 20, or divide by 100. If the probe being calibrated has a non-standard
attenuation, the instrument will adjust the vertical scale factors of the input
channel to match this attenuation.

C A U T I O N The input circuits can be damaged by electrostatic discharge (ESD). Avoid
applying static discharges to the front-panel input connectors. Momentarily
short the center and outer conductors of coaxial cables prior to connecting
them to the front-panel inputs. Before touching the front-panel input
connectors be sure to first touch the frame of the instrument. Be sure the
instrument is properly earth-grounded to prevent buildup of static charge.
Wear a wrist-strap or heel-strap.

The Instrument Adjusts Vertical Scale Factors

For passive or non-identified probes, the instrument adjusts the vertical scale factors
only if a probe calibration is performed.
12-4

Calibration Commands
Calibration Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
Calibration Commands

The commands in the CALibration subsystem initiate the analyzer calibration
over GPIB.

CANCel

Command :CALibrate:CANCel

This command cancels normalization when a calibration message box prompt
is displayed.

Example This example cancels the analyzer calibration.

10 OUTPUT 707;":CALIBRATE:CANCEL"
20 END

CONTinue

Command :CALibrate:CONTinue

This command continues normalization when a calibration message box
prompt is displayed.

Example This example continues the analyzer calibration.

10 OUTPUT 707;":CALIBRATE:CONTINUE"
20 END

ERATio:DLEVel?

Query :CALibrate:ERATio:DLEVel? CHANnel<N>

<N> An integer, from 1 to 4.

This query returns the dark level value for the specified channel. If an extinc-
tion ratio calibration has been performed the returned value is the calibration
result. If no calibration has been performed the default value of 0.0 is
returned.

Let the Analyzer Warm Up First

Let the analyzer warm up for at least 1 hour before you calibrate it.
12-5

Calibration Commands
Calibration Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Returned Format [:CALibrate:ERATio:DLEVel] <value><NL>

ERATio:STARt

Command :CALibrate:ERATio:STARt CHANnel<N>

This command starts an extinction ratio calibration.

<N> An integer, from 1 to 4.

ERATio:STATus?

Query :CALibrate:ERATio:STATus? CHANnel<N>

This query indicates whether the ratio being used is the result of an extinction
ratio calibration or is the factory default value. The query returns CALI-
BRATED or DEFAULTED.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:ERATio:STATus] {CALIBRATED | DEFAULTED}<NL>

FRAMe:LABel

Command :CALibrate:FRAMe:LABel <label>

This command is intended for user notes, such as name/initials of the calibra-
tor or special notes about the calibration. It accepts a string of up to 80 char-
acters. The information is optional.

<label> A string, enclosed with quotes, with a maximum of 80 characters.

Query :CALibrate:FRAMe:LABel?

The query returns the currently defined label for the frame.

Returned Format [:CALibrate:FRAMe:LABel] <quoted string><NL>

Ensure Eye Diagram is on Display Screen

Adjust the vertical scale and offset so that the eye diagram uses the full display prior to
performing an extinction ratio calibration. Also, the dark level (the signal level when
there is no input to the measurement) must be on the screen to be correctly measured.
12-6

Calibration Commands
Calibration Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
FRAMe:STARt

Command :CALibrate:FRAMe:STARt

This command starts the annual calibration on the instrument mainframe.

FRAMe:TIME?

Query :CALibrate:FRAMe:TIME?

This query returns the date, time and temperature at which the last full frame
calibration process was completed.

Returned Format [:CALibrate:FRAMe:TIME] <time> <NL>

<time> Is in the format: DD MMM YY HH:MM <delta_temp>

<delta_temp> Is the difference between the current temperature and the temperature when
the last calibration was done. For example, <delta_temp> might be:

–5C
10C
–12C

MODule:LRESistance

Command :CALibrate:MODule:LRESistance <resistance_value>

This command sets the load resistance value used during module calibration
of a TDR module. The accuracy of the calibration is improved by specifying
the exact resistance value of the load that is connected to the TDR module
during the calibration process.

<resistance_value> The resistance of the load from 47 to 53 ohm. The default value is the target
value of 50 ohm.

Example This example sets the load resistance value to 49.9 ohms.

10 OUTPUT 707;”:CALIBRATE:MODULE:LRESISTANCE 49.9”
20 END

Query :CALibrate:MODule:LRESistance?

The query returns the resistance value in ohms for the load used during mod-
ule calibration of a TDR module.

Returned Format [:CALibrate:MODule:LRESistance] <resistance_value><NL>
12-7

Calibration Commands
Calibration Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
MODule:OCONversion?

Query :CALibrate:MODule:OCONversion? {LMODule | RMODule | CHANnel<N>},{WAVelength 1 |
WAVelength 2 | USER}

This query returns the optical conversion (responsivity) of the specified chan-
nel at the specified wavelength. Wavelength 1 and Wavelength 2 are for fac-
tory-calibrated wavelengths. USER is the result of a user optical calibration.

If LMOD or RMOD is specified for a dual optical module, the optical conver-
sion of channel 1 (for LMOD) or channel 3 (for RMOD) will be returned.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:MODule:OCONversion] <value><NL>

MODule:OPOWer

Command :CALibrate:MODule:OPOWer <optical_power_value>

This command sets the optical power level for an optical channel module cali-
bration. This command should only be used for modules with an optical chan-
nel.

Example 10 OUTPUT 707;":CALIBRATE:MODULE:OPOWER 500E–6"
20 END

MODule:OPTical

Command :CALibrate:MODule:OPTical {CHANnel<N>}

This command initiates an O/E calibration on the selected channel. The
selected channel must be an optical channel.

<N> An integer, 1 through 4.

Example 10 DIM Prompt $[64]
20 OUTPUT 707;":CALIBRATE:MODULE:OPTICAL CHAN1"
30 OUTPUT 707;":CALIBRATE:SDONE?"
40 ENTER 707;Prompt$ <Disconnect optical source form channel 1>
50 OUTPUT 707;":CALIBRATE:CONTINUE"
60 OUTPUT 707;":CALIBRATE:SDONE?"
70 ENTER 707;Prompt$ <Enter wavelength and power of optical source>
80 OUTPUT 707;":CALIBRATE:MODULE:OWAVELENGTH 1340E–9"
90 OUTPUT 707;":CALIBRATE:MODULE:OPOWER 500E–6"
100 OUTPUT 707;":CALIBRATE:CONTINUE"
110 OUTPUT 707;":CALIBRATE:SDONE?"
12-8

Calibration Commands
Calibration Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
120 ENTER 707;Prompt$ <Connect optical source to channel 1>
130 OUTPUT 707;":CALIBRATE:CONTINUE"
140 OUTPUT 707;":CALIBRATE:SDONE?"
150 ENTER 707;Prompt$ <Done>
160 END

MODule:OWAVelength

Command :CALibrate:MODule:OWAVelength <wavelength>

This command sets the optical wavelength for an optical channel calibration.
This command should only be used for modules with an optical channel.

Example 10 OUTPUT 707;":CALIBRATE:MODULE:OWAVELENGTH 1340E–9"
20 END

MODule:STATus?

Query :CALibrate:MODule:STATus?{LMODule | RMODule}

This query returns the status of the module calibration (electrical and optical
channels) and optical calibration (optical channels) as either CALIBRATED or
UNCALIBRATED. It will return UNKNOWN if the module does not have cali-
bration capability. Queries to modules with two electrical channels (including
TDR modules) will return the status of module calibration only. Queries to
modules with two optical channels will return the status of the module calibra-
tion, followed by the status of optical calibration of the first channel, followed
by the status of the optical calibration of the second channel.

Returned Format [:CALibrate:MODule:STATus] {<status vertical calibration>,<status optical calibration> |
CALIBRATED | UNCALIBRATED | UNKNOWN} <NL>

MODule:TIME?

Query :CALibrate:MODule:TIME? {LMODule | RMODule | CHANnel <N>}

The query returns the date and time at the last channel module calibration,
and the difference between the current channel temperature and the temper-
ature of the channel when it was last calibrated. If there is not a module in the
selected slot, the message “Empty Slot” is returned.

This query is for a module calibration only.
12-9

Calibration Commands
Calibration Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
<N> An integer, 1 through 4.

Returned Format [:CALibrate:MODule:TIME] <value><NL>

<value> Is in the format: DD MMM YY HH:MM <delta_temp>

<delta_temp> Is the difference between the current temperature and the temperature when
the last calibration was done. For example, <delta_temp> might be:

–5C
10C
–12C

MODule:VERTical

Command :CALibrate:MODule:VERTical {LMODule | RMODule}

This command initiates a module calibration on a selected slot. The specified
slot should be the first slot of a double-wide module.

Example GPIB sequence for module calibration:

10 OUTPUT 707;":CALIBRATE:MODULE:VERTICAL LMODULE" <disconnect all inputs>
20 OUTPUT 707;":CALIBRATE:MODULE:CONTINUE"
30 END

OUTPut

Command :CALibrate:OUTPut <dc_value>

This command sets the dc level of the calibrator signal output through the
front-panel CAL connector.

Example This example puts a dc voltage of 2.0 V on the analyzer Cal connector.

10 OUTPUT 707;":CALIBRATE:OUTPUT 2.0"
20 END

<dc_value> dc level value in volts, adjustable from –2.0 V to +2.0 Vdc.

Query :CALibrate:OUTPut?

The query returns the current dc level of the calibrator output.

Returned Format [:CALibrate:OUTPut] <dc_value><NL>

Example This example places the current selection for the dc calibration to be printed
in the string variable, Selection$, then prints the contents of the variable to
the controller’s screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":CALIBRATE:OUTPUT?"
12-10

Calibration Commands
Calibration Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

PROBe

Command :CALibrate:PROBe CHANnel<N>

This command starts the probe calibration for the selected channel. It has the
same action as the command :CHANnel<N>:PROBe:CALibrate. For more
information about probe calibration, refer to “Probe Calibration” on page 12-4.

<N> An integer, 1 through 4.

Example The following example starts calibration for Channel 1.

10 OUTPUT 707;":CALibrate:PROBe CHANnel1"
20 END

RECommend?

Query :CALibrate:RECommend? {CHANnel<N>}

The values returned by this query indicate the current calibration recommen-
dations of the analyzer. There are seven comma-separated integers. A "1"
indicates that a calibration is recommended, a 0 indicates that the calibration
is either not required or not possible. These values match the calibration rec-
ommendations found in the All Calibrations dialog box.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:RECommend] <values><NL>

<values> <Module/Vertical>,
<Mainframe/Horizontal>,
<ChannelN Extinction Ratio>,
<ChannelN Probe>,
<ChannelN Optical Wavelength1>,
<ChannelN Optical Wavelength2>,
<ChannelN Optical User-defined>

All Calibrations Dialog Box

Open the Calibrate menu on the instrument display screen, then choose
All Calibrations to open the All Calibrations dialog box.
12-11

Calibration Commands
Calibration Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
SAMPlers

Command :CALibrate:SAMPlers {DISable | ENABle}

This command enables or disables the samplers in the module.

Example The following example enables sampler calibration for the module.

10 OUTPUT 707;":CALIBRATE:SAMPLERS ENABLE"
20 END

Query :CALibrate:SAMPlers?

The query returns the current calibration enable/disable setting.

Returned Format [:CALibrate:SAMPlers]{DISable | ENABle}<NL>

Example The following example gets the current setting for sampler calibration, stores
it in the variable Sampler$, and prints the contents of the variable to the con-
troller’s screen.

10 DIM Sampler$[50] !Dimension variable
20 OUTPUT 707;":CALIBRATE:SAMPLERS?"
30 ENTER 707;Sampler$
40 PRINT Sampler$
50 END

SDONe?

Query :CALibrate:SDONe?

The CALibrate:SDONe (Step DONe) query will return when the current cali-
bration step is complete.

The contents of the string returned indicates to the user the next step.

Returned Format [:CALibrate:SDONe] <string><NL>

Example This example places the current selection for the calibration pass/fail status to
be printed in the string variable, Selection$, then prints the contents of the
variable to the controller’s screen.

10 DIM Selection$[80] !Dimension variable
20 OUTPUT 707;":CALIBRATE:SDONE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END
12-12

Calibration Commands
Calibration Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
SKEW

Command :CALibrate:SKEW {CHANnel<N>},<skew_value>

This command sets the channel-to-channel skew factor for a channel. The
numerical argument is a real number in seconds which is added to the current
time base position to shift the position of the channel’s data in time. Use this
command to compensate for differences in the electrical lengths of input
paths due to cabling and probes.

<N> An integer, from 1 to 4.

<skew_value> A real number, 0 s to 100 µs

Example This example sets the analyzer channel 1 skew to 0.0001 s.

10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,0.1s "
20 END

Query :CALibrate:SKEW? {CHANnel<N>}

The query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

SKEW:AUTO

Command CALibrate:SKEW:AUTO

This command sets the horizontal skew of multiple, active channels with the
same bit rate, so that the waveform crossings align with each other. In addi-
tion, auto skew optimizes the instrument trigger level. Prior to auto skew, at
least one channel must display a complete eye diagram in order to make the
initial bit rate measurement.

Mode NRZ Eye mode only.

Example This example initiates auto skew.

Auto Skew Uses CGRade:COMPlete

Auto skew uses the current color grade measurement completion criterion (refer to
“CGRade:COMPlete” on page 23-8). If auto skew fails to make the bit rate measurement
or determine the time of the crossing points needed to compute the skew, it may be nec-
essary to increase the color grade completion criterion. Increasing the value will
increase the time for auto skew to complete.
12-13

Calibration Commands
Calibration Procedure

book.book Page 14 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;":CALIBRATE:SKEW:AUTO "
20 END

STATus?

Query :CALibrate:STATus?

This query returns the calibration status of the analyzer. These are nine
comma-separated integers, with 1 or 0. A "1" indicates calibrated; a "0" indi-
cates uncalibrated.

Returned Format [:CALibrate:STATus] <status><NL>

<status> <Mainframe Calibration Status>,
<Channel1 Module Calibration>, 0,
<Channel2 Module Calibration>, 0,
<Channel3 Module Calibration>, 0,
<Channel4 Module Calibration>, 0

The values that always return “0” are used to make the returned format com-
patible with the Agilent 83480A and 54750A.

Calibration Procedure

This is an example of how to do module module calibration.

10 DIM Prompt$[64]
20 OUTPUT 707;":CALIBRATE:MODULE:VERTICAL LMODULE”
30 OUTPUT 707;":CALIBRATE:SDONE?”
40 ENTER 707;Prompt$ <Disconnect everything from left module>
50 OUTPUT 707;":CALIBRATE:CONTINUE”
60 OUTPUT 707;":CALIBRATE:SDONE?”
70 ENTER 707;Prompt$ <Done>

Query for Recommended Calibrations

Use CALibrate:RECommend? to query for recommended calibrations.
12-14

book.book Page 1 Friday, July 12, 2002 1:51 PM
13

LOCKed? 13-2
RATE 13-2
SPResent? 13-4
Clock Recovery Commands

Clock Recovery Commands
Clock Recovery Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Clock Recovery Commands

The Clock RECovery (CREC) subsystem commands control the clock recov-
ery modules. This includes setting data rates, as well as querying locked status
and signal present conditions.

LOCKed?

Query :CRECovery{1 | 3}:LOCKed?

The query returns the locked or triggered status of the clock recovery module.

Locked or triggered status returns 1, unlocked or trigger loss status returns 0.
When a clock rate is selected, unlocked status indicates clock recovery cannot
be established and trigger output to the mainframe is disabled. In bypass
mode (TOD) status is always 0 and trigger output to the mainframe is not dis-
abled.

Returned Format [:CRECovery{1 | 3}:LOCKed] {1 | 0}<NL>

Example The following example checks the locked status of module in the left slot and
places the result in the string variable, Locked$. Then the program prints the
contents of the variable to the controller’s screen.

10 DIM Locked$[50]
20 OUTPUT 707;":CRECOVERY1:LOCKED?"
30 ENTER 707;Locked$
40 PRINT Locked$
50 END

RATE

Command :CRECovery{1 | 3}:RATE {TOData | R155 | R622 | R1062 | R1250 | R2125 | R2488 | R2500 | R2666
| R9953 | R10312 | R10664 | R10709}

This command sets the clock recovery module data rate based on module slot
position: left slot (1), right slot (3). The rates are: Trigger On Data (TOData),
Rate 155, Rate 622, Rate 1062, Rate 1250, Rate 2125, Rate 2488, Rate 2500,
Rate 2666, Rate 9953, Rate 10312, Rate 10664, and Rate 10709 in Mb/s.
13-2

Clock Recovery Commands
Clock Recovery Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
Rate parameters are nominal and reflect front panel labels and not actual data
rates.

As noted in the table below, not all modules support the same rates.

Example This example sets the module in the right slot to a data rate of 2488 Mb/s.

10 OUTPUT 707;":CRECOVERY3:RATE R2488"
20 END

Query :CRECovery{1 | 3}:RATE?

This query returns the current data rate of the clock recovery module in the
specified module position.

Note

After setting a rate, locked or triggered status should be verified before executing any
signal dependent GPIB commands, such as autoscale, or any measurements. This is
required to allow the module/instrument enough time to establish a trigger. This can be
achieved by querying locked status until locked or generating an event on the module
lock.

Data Rates vs. Model

Rate
Parameter

Rate (Mb/s)

Module Model Number

83491 83492 83493 83494 83494
Option 103

83494
Option 106

83494
Option 107

TOData — X X X X X X X

R155 155.52 X X X X X X X

R622 622.08 X X X X X X X

R1062 1062.50 X X

R1250 1250.00 X X X

R2125 2125.00 X X

R2488 2488.32 X X X X X X X

R2500 2500.00 X X X

R2666 2666.06 X X

R9953 9953.28 X

R10312 10312.50 X

R10664 10664.23 X

R10709 10709,225 X
13-3

Clock Recovery Commands
Clock Recovery Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Returned Format [:CRECovery{1 | 3}:RATE] {TOData | R155 | R622 | R1062 | R1250 | R2125 | R2488 | R2500 |
R2666 | R9953 | R10312 | R10664 | R10709}<NL>

Example The following example checks the current data rate of the module in the left
slot and places the result in the string variable, Rate$. Then the program
prints the contents of the variable to the controller’s screen.

10 DIM Rate$[50]
20 OUTPUT 707;":CRECOVERY1:RATE?"
30 ENTER 707;Rate$
40 PRINT Rate$
50 END

SPResent?

Query :CRECovery{1 | 3}:SPResent? {RECeiver1 | RECeiver2}

This query returns the status of whether the specified receiver detects an
optical signal (Signal PResent). RECeiver2 is used for long wavelengths and
RECeiver1 is used for short wavelengths. For electrical clock recovery mod-
ules, 83491A, the signal present flags will always return false.

Returned Format [:CRECovery{1 | 3}:SPResent] {RECeiver1 | RECeiver2}, {1 | 0}<NL>

Example The following example checks if there is a signal present on receiver two of
the module in the right slot and places the result in the string variable,
Signal2$. Then the program prints the contents of the variable to the control-
ler’s screen.

10 DIM Signal2$[50]

Signal Present Return Status vs. Receiver Number

Module Model
Receiver 1
Short Wavelength

Receiver 2
Long Wavelength

83491 0 0

83492a

a. Only one receiver at a time can have a signal present.

1/0 1/0

83493 0 1/0

83494 0 1/0

83494 Option 103 0 1/0

83494 Option 106 0 1/0

83494 Option 107 0 1/0
13-4

Clock Recovery Commands
Clock Recovery Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
20 OUTPUT 707;":CRECOVERY3:SPRESENT? RECEIVER2"
30 ENTER 707;Signal2$
40 PRINT Signal2$
50 END
13-5

book.book Page 6 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
14

BANDwidth 14-2
DISPlay 14-3
FDEScription? 14-3
FILTer 14-4
FSELect 14-4
OFFSet 14-5
PROBe 14-6
PROBe:CALibrate 14-6
RANGe 14-6
SCALe 14-7
TDRSkew 14-8
UNITs 14-9
UNITs:ATTenuation 14-9
UNITs:OFFSet 14-9
WAVelength 14-9
Channel Commands

Channel Commands
Channel Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Channel Commands

The CHANnel subsystem commands control all vertical (Y axis) functions of
the analyzer. You may toggle the channel displays on and off with the root
level commands VIEW and BLANk, or with DISPlay.

BANDwidth

Command :CHANnel<N>:BANDwidth {HIGH | MID | LOW}

This command controls the channel bandwidth setting. When HIGH, the band-
width is set to the upper bandwidth limit. When LOW, a lower bandwidth set-
ting is selected in order to minimize broadband noise. For modules with three
bandwidths, MID will select the center bandwidth. See the module section of
the online Help for cutoff frequency specifications.

<N> The channel number which represents an integer, 1 to 4. The integer is the
slot in which the channel resides.

Example The following example sets the channel 1 bandwidth to “HIGH”.

10 OUTPUT 707;":CHANNEL1:BANDwidth HIGH"
20 END

Query :CHANnel<N>:BANDwidth?

The query returns the state of the bandwidth for the specified channel.

Returned Format [:CHANnel<N>:BANDwidth] {HIGH | MID | LOW}<NL>

Example The following example places the current setting of the channel bandwidth in
the string variable, Band$, and then prints the contents of the variable to the
controller’s screen.

10 DIM Limit$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:BANDwidth?"
30 ENTER 707;Band$
40 PRINT Band$
50 END
14-2

Channel Commands
Channel Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
DISPlay

Command :CHANnel<N>:DISPlay {{ON | 1} | {OFF | 0}}[,APPend]

This command turns the display of the specified channel on or off.

<N> The channel number is an integer 1 to 4.

APPend This optional parameter is used to turn on additional channels in Eye/Mask
mode without turning off any other database signals that are currently on.
Without the APPend parameter, all other database signals would be turned off
when turning a channel on.

Example This example sets channel 1 display to on.

10 OUTPUT 707;"CHANNEL1:DISPLAY ON"
20 END

Query :CHANnel<N>:DISPlay?

The query returns the current display condition for the specified channel.

Returned Format [:CHANnel<N>:DISPlay] {1 | 0}<NL>

Example This example places the current setting of the channel 1 display in the vari-
able Display, then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY?"
30 ENTER 707;Display
40 PRINT Display
50 END

FDEScription?

Query :CHANnel<N>:FDEScription?

This query returns the number of filters and a brief description of each filter
for channels with one or more internal low-pass filters.

The filter description is the same as the softkey label for the control used to
select the active filter.

<N> The channel number is an integer from 1 to 4. The integer is the slot in which
the channel resides.

Returned Format [:CHANnel<N>:FDEScription]<N><filter1_description>,<filter2_description>, ...
<filterN_description><NL>

<N> number of filters

<filter_description> XXX b/s or XXX b/s:N (depending on the module option)
14-3

Channel Commands
Channel Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
where: XXX is bit rate of filter; N is filter order

FILTer

Command :CHANnel<N>:FILTer {ON | 1 | OFF | 0}

This command controls an internal low-pass filter, if one is present, in the
channel hardware.

<N> The channel number is an integer from 1 to 4. The integer is the slot in which
the channel resides.

Example 10 OUTPUT 707;":CHANNEL1:FILTER ON"
20 END

Query :CHANnel<N>:FILTer?

The query returns the filter setting for the specified channel.

Returned Format [:CHANnel<N>:FILTer] {1 | 0}<NL>

Example The following example places the current setting of the filter in the string vari-
able, Filter$, and then prints the contents of the variable to the controller’s
screen.

10 DIM Filter$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:FILTER?"
30 ENTER 707;Filter$
40 PRINT Filter$
50 END

FSELect

Command :CHANnel<N>:FSELect FILTer<filter_number>

This command selects which filter is controlled by on/off for channels with
more than one filter selection.

To query for a description of the filters, see the CHANnel:FDEScription query.

<N> The channel number is an integer from 1 to 4. The integer is the slot in which
the channel resides.

Filter State

When you turn the filter on, you can select which channel bandwidth setting you want to
use. When you turn the filter off, the instrument sets the channel bandwidth to its
default setting.
14-4

Channel Commands
Channel Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
<filter_number> The filter number is an integer. In the Channel dialog box, filter number 1 is
the first filter listed in the Filter box.

Example 10 OUTPUT 707;":CHANNEL1:FSELECT FILTER1"
20 END

Query :CHANnel<N>:FSELect?

The query returns the current filter number for the specified channel.

Returned Format [:CHANnel<N>:FSELect]{FILT<filter_number>}<NL>

Example The following example places the current setting of the filter in the string vari-
able, Filter$, and then prints the contents of the variable to the controller’s
screen.

10 DIM Filter$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:FSELECT?"
30 ENTER 707;Filter$
40 PRINT Filter$
50 END

See Also CHANnel:FDEScription?

OFFSet

Command :CHANnel<N>:OFFSet <offset_value>

This command sets the voltage that is represented at the center of the display
for the selected channel. Offset parameters are probe and vertical scale
dependent.

For TDR and TDT applications, when the TDR stimulus is set to differential or
common mode, the instrument will change offset to magnify offset. This com-
mand is used to set the magnify offset as well as the offset.

<N> An integer, from 1 through 4.

<offset _value> Offset value at center screen. Usually expressed in volts, but could be in other
measurement units, such as amperes, if you have specified other units using
the CHANnel:UNITs command.

Example This example sets the offset for channel 1 to 0.125 in the current measure-
ment units.

10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

Query :CHANnel<N>:OFFSet?

The query returns the current offset value for the specified channel.

Returned Format [CHANnel<N>:OFFSet] <offset value><NL>
14-5

Channel Commands
Channel Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Example This example places the offset value of the specified channel in the string vari-
able, Offset$, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:OFFSET?"
30 ENTER 707;Offset
40 PRINT Offset
50 END

PROBe

Command :CHANnel<N>:PROBe <attenuation factor>[,{RATio | DECibel}]

This command sets the attenuation factor and units. The default attenuation
factor is 1:1 and the default units are ratio. When the TDR stimulus is set to
differential or common mode, the instrument will change offset to magnify off-
set. This command is used to set the magnify offset as well as the offset.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:PROBe?

Returned Format [:CHANnel<N>:PROBe] <attenuation factor>, {RATio | DECibel}<NL>

PROBe:CALibrate

Command :CHANnel<N>:PROBe:CALibrate

This command starts the probe’s calibration for the selected channel. It has
the same action as the command :CALibrate:PROBe CHANnel<N>. For more
information about probe calibration, refer to “Probe Calibration” on page 12-4.

<N> An integer, from 1 to 4.

Example The following example starts calibration for Channel 1.

10 OUTPUT 707;":CHANNEL1:PROBE:CALIBRATE"
20 END

RANGe

Command :CHANnel<N>:RANGe <range_value>
14-6

Channel Commands
Channel Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
This command defines the full-scale vertical axis of the selected channel. It
sets up acquisition and display hardware to display the waveform at a given
range scale. The values represent the full-scale deflection factor of the vertical
axis in volts. These values change as the probe attenuation factor is changed.

For TDR and TDT applications, when the TDR stimulus is set to differential or
common mode, or when OHM, REFLect, or GAIN units are selected, the
instrument will change scale to magnify scale. This command is used to set the
magnify range as well as the range.

<N> An integer, 1 through 4.

<range_value> Full-scale voltage of the specified channel number.

Example This example sets the full-scale range for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:RANGE 500E-3"
20 END

Query :CHANnel<N>:RANGe?

The query returns the current full-scale vertical axis setting for the selected
channel.

Returned Format [:CHANnel<N>:RANGe]<range value><NL>

Example This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

SCALe

Command :CHANnel<N>:SCALe <scale_value>

This command sets the vertical scale, or units per division, of the selected
channel. This command is the same as the front-panel channel scale.

For TDR and TDT applications, when the TDR stimulus is set to differential or
common mode, the instrument will change scale to magnify scale. This com-
mand is used to set the magnify scale as well as the scale.

<N> An integer, 1 through 4.

<scale_value> Vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
14-7

Channel Commands
Channel Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
20 END

Query :CHANnel<N>:SCALe?

The query returns the current scale setting for the specified channel.

Returned Format [:CHANnel<N>:SCALe] <scale value><NL>

Example This example places the current scale value in the number variable, Setting,
then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":CHANNEL1:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

TDRSkew

Command :CHANnel<N>:TDRSkew <percent> [%]

This command sets the TDR skew for the given channel. The TDR skew con-
trol moves the TDR step relative to the trigger position. The control may be
set from –100 to 100 percent of the allowable range. This command is only
applicable to TDR channels.

<N> An integer, 1 through 4, indicating the slot in which the channel resides, fol-
lowed by an optional A or B identifying which of two possible channels in the
slot is being referenced.

<percent> A number between –100 and 100, used to set the step position.

Example The following example sets the TDR skew for channel 1 to 20%.

10 OUTPUT 707;":CHANNEL1:TDRSKEW 20"
20 END

Query :CHANnel<N>:TDRSkew?

The query returns the current TDR skew setting for the specified channel.It
returns the TDR skew value in percent of allowable range from –100 to
100 percent. This command is only applicable to TDR channels. The returned
format is a real number.

Returned Format [:CHANnel<N>:TDRSkew] <value><NL>

Command Requirements

This command is enabled only if a stimulus is currently active and if the module has dif-
ferential capability.
14-8

Channel Commands
Channel Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
UNITs

Command :CHANnel<N>:UNITs {VOLT | OHM |AMPere | REFLect | WATT | UNKNown}

This command sets the transducer units in Oscilloscope and Eye/Mask modes.
In TDR/TDT mode this command sets the channel units (VOLT, OHM,
REFLect).

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs?

Returned Format [:CHANnel<N>:UNITs] {VOLT | OHM | REFLect | AMPere | WATT | UNKNown}<NL>

UNITs:ATTenuation

Command :CHANnel<N>:UNITs:ATTenuation <attenuation>

This command sets the transducer attenuation factor. This command is dis-
abled for TDR channels and destinations channels for TDR/TDT measure-
ments.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs:ATTenuation?

Returned Format [:CHANnel<N>:UNITs:ATTenuation] <attenuation><NL>

UNITs:OFFSet

Command :CHANnel<N>:UNITs:OFFSet <offset>

This command sets the transducer offset. This command is disabled for TDR
channels and destinations channels for TDR/TDT measurements.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs:OFFSet?

Returned Format [:CHANnel<N>:UNITs:OFFSet] <offset><NL>

WAVelength

Command :CHANnel<N>:WAVelength {WAVelength1 | WAVelength2 | USER}
14-9

Channel Commands
Channel Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
This command sets the wavelength selection for optical channels. For mod-
ules that only support one factory-defined wavelength, the module will have
one factory calibration; all other optical modules will have two. Invoke these
calibrations using WAV1 or WAV2. One user-defined wavelength may also be
defined via the Channel Calibrate menu. The USER selection is only valid if
this user-defined calibration has been performed. The calibration will request
the wavelength that the USER choice corresponds to.

This command will also recognize W1310 as an equivalent for WAVelength1
and W1550 for WAVelength2, for compatibility with the Agilent 83480A/
54750A.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:WAVelength?

The query returns the currently selected wavelength for the channel.

Returned Format [:CHANnel<N>:WAVelength] {WAV1 | WAV2 | USER}<NL>

Example 10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;":CHANnel1:WAVELENGTH?"
30 ENTER 707;Setting
40 PRINT Setting
50 END UNITs
14-10

book.book Page 1 Friday, July 12, 2002 1:51 PM
15

CDIRectory 15-2
DELete 15-3
DIRectory? 15-3
LOAD 15-4
MDIRectory 15-5
PWD? 15-5
SIMage 15-6
STORe 15-7
Disk Commands

Disk Commands
Disk Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Disk Commands

The DISK subsystem commands perform the disk operations as defined in the
Disk menu. This allows storage and retrieval of waveforms and setups, remote
screen captures, as well as formatting the disk.

CDIRectory

Command :DISK:CDIRectory ["<directory>" | {CGRade | LSUMmaries | ROOT | SETups | SIMages | SMASks
| TDRTDT | UMASks | WAVeforms}]

This command changes the present working directory (PWD) to the desig-
nated directory name. If an error occurs, the requested directory does not
exist. You can view the error with the :SYSTem:ERRor? [{NUMBer | STRing}]
query.

The PWD is set to “C:\User Files” when the instrument is powered on. The
PWD is combined with relative file specifications to produce absolute path
specifications. For example, if the PWD is set to “C:\User Files\My Setup”, the
command :DISK:STORE SETUP, “.\setup1.set” will cause the current setup to
be stored in the file “C:\User Files\My Setup\setup1.set”.

Note

Some commands in this subsystem operate only on files and directories on “A:\”, under
“C:\User Files”, or on any mapped network drive, and are noted in the command section.

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

This command operates only on files and directories on “A:\”, under “C:\User Files”, or
on any mapped network drive.
15-2

Disk Commands
Disk Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
<directory> A character-quoted ASCII string, which can include the subdirectory designa-
tion. You must separate the directory name and any subdirectories with a
backslash (\).

ROOT This parameter changes the working directory to “C:\User Files”.

Example 10 OUTPUT 707;":DISK:CDIRECTORY ""C:\USER FILES\DATA"""
20 END

DELete

Command :DISK:DELete "<file_name>"

This command deletes a file from the disk. If no path is specified, it searches
for the file using the present working directory. An error is displayed on the
analyzer screen if the requested file does not exist. The file
“C:\User Files” cannot be deleted.

<file_name> A character-quoted ASCII string which can include subdirectories with the
name of the file.

Example 10 OUTPUT 707;":DISK:CDIRECTORY SETUPS"
20 OUTPUT 707;":DISK:DELETE ""FILE1.SET"""
30 END

DIRectory?

Query :DISK:DIRectory? ["<directory>" | {CGRade | ROOT | LSUMmaries | SETups | SIMages |
SMASks | TDRTDT | UMASks | WAVeforms}]

CDIR "C:\" Is Not Allowed

You can execute the command CDIR "A:\", but the command CDIR "C:\" is not allowed. If
you attempt to execute CDIR "C:\", the present working directory (PWD) is not changed.
The directory specified must be below “C:\User Files\”.

Note

This command operates only on files and directories on “A:\”, under “C:\User Files”, or
on any mapped network drive.
15-3

Disk Commands
Disk Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
This query returns the requested directory listing. The directory may be spec-
ified as a string, such as "C:\User Files\waveforms", or as a parameter. If no
parameter is used, a listing of the present working directory is returned.

<directory> The list of file names and directories.

Returned Format [:DISK:DIRectory]<N><NL><directory><NL>

<N> The specifier that is returned before the directory listing, indicating the num-
ber of lines in the listing.

<directory> The list of filenames and directories. Each line is separated by a <NL>.

Example This example displays a number, then displays a list of files and directories in
the current directory. The number indicates the number of lines in the listing.

10 DIM A$[80]
20 INTEGER Num_of_lines
30 OUTPUT 707;":DISK:DIR?"
40 ENTER 707;Num_of_lines
50 PRINT Num_of_lines
60 FOR I=1 TO Num_of_lines
70 ENTER 707;A$
80 PRINT A$
90 NEXT I
100 END

LOAD

Command :DISK:LOAD "<file_name>"[,<destination>[,APPend]

This command restores a setup, waveform, or TDR/TDT calibration from the
disk. The type of file is determined by the filename suffix if one is present, or
by the destination field if one is not present. If a destination is specified, it
takes precedence over the filename suffix. You can load .wfm, .txt, .cgs, .msk,
.pcm, .set and .tdr file types. The TDRTDT option is a file type choice used to
load TDR/TDT calibration values into the instrument. For more information on
loading files, see “File Names and Types” on page 1-11, and “File Locations” on
page 1-13.

<file_name> The filename, with a 3-character extension. You can use either .wfm, .txt, .cgs,
.msk, .pcm, .set, or .tdr as a suffix after the filename. If no file suffix is speci-
fied, the default is .wfm.

This command operates only on files and directories on “A:\”, under “C:\User Files”, or
on any mapped network drive.
15-4

Disk Commands
Disk Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
The default directory for the file type is assumed, or you can specify the entire
path. For example, you can load the standard setup file "setup0.set" using the
command:

:DISK:LOAD "C:\User Files\Setups\setup0.set",setup

The default destination for .txt and .wfm files is WMEMory1.

<destination> {CGMemory | MASK | WMEMory<N> | SETup | TDRTDT}

APPend This optional parameter is used to turn on additional channels in Eye/Mask
mode without turning off any channel(s) that are currently on. Without the
APPend parameter, all other database signals would be turned off when load-
ing .cgs file.

<N> An integer from 1 to 4.

Example 10 OUTPUT 707;":DISK:LOAD ""FILE1.WFM"",WMEM1"
20 END

MDIRectory

Command :DISK:MDIRectory "<directory>"

This command creates a directory in the present working directory, with the
designated directory name. An error is displayed if the requested path does
not exist.

<directory> A character-quoted ASCII string which can include subdirectories. You must
separate the directory name and any subdirectories with a backslash (\).

Example 10 OUTPUT 707;":DISK:MDIRECTORY ""CPROGRAMS"""
20 END

PWD?

Query :DISK:PWD?

This query returns the name of the present working directory (including the
full path).

Returned Format [:DISK:PWD] <present_working_directory><NL>

Example 10 DIM Wdir$[200]
20 OUTPUT 707;":DISK:PWD?"

This command operates only on files and directories on “A:\”, under “C:\User Files”, or
on any mapped network drive.
15-5

Disk Commands
Disk Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
30 ENTER 707; Wdir$
40 PRINT Wdir$
50 END

SIMage

Command :DISK:SIMage "<filename>"[,<area> [,<image>]]

This command remotely captures images of the screen.

<filename> If a filename is specified without a path, the default path will be
C:\User Files\screen images. The default file type is a bitmap
(.bmp).

The filename field encodes the network path of the directory in which the file
will be saved, as well as the file format that will be used. The following is a list
of valid filenames.

The following graphics formats are available by specifying a file extension:
PCX files (.pcx), EPS files (.eps), Postscript files (.ps), JPEG files (.jpg), TIFF
files (.tif), and GIF files (.gif).

Note

This command operates only on files and directories on “A:\”, under
“C:\User Files”, or on any mapped network drive.

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” C:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.
15-6

Disk Commands
Disk Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
<area> {SCReen | GRATicule}

This parameter selects which data from the screen is to be saved to disk.
When you select GRATicule, only the graticule area of the display screen is
saved; the entire screen is saved if you select SCReen. The default setting is
SCReen.

<image> {NORMal | INVert | MONochrome}

This parameter specifies which color scheme is to be used during the screen
save operation. The default value is INVert; this scheme saves the waveforms
over a white background.

STORe

Command :DISK:STORe <source>,"<file_name>"[,<format>]

This command stores a setup, waveform or TDR response to the disk. The file-
name does not include a suffix. The suffix is supplied by the analyzer depend-
ing on the source and file format specified. The TDRTDT option is a file type
choice used to store the instrument’s TDR/TDT calibration values. For more
information on storing files, see “File Names and Types” on page 1-11, and
“File Locations” on page 1-13.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | SETup | RESPonse<N> | CGRade | TDRTDT}

If a CGRade source has not been selected, CGRade defaults to the lowest valid
database available. To set the CGRade source, use the
:WAVeform:SOURce:CGRade command.

Note

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user
should not modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Indepen-
dent JPEG Group.

Note

This command operates only on files and directories on “A:\”, under “C:\User Files”, or
on any mapped network drive.
15-7

Disk Commands
Disk Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
<N> An integer from 1 to 4, representing the channel, function, TDR response or
waveform memory number.

<file_name> Name of the file, with a maximum of 254 characters (including the path name,
if used). The filename assumes the present working directory if a path does
not precede the file name.

<format> {TEXT {,<YVALues> | <VERBose>} | INTernal}

Example 10 OUTPUT 707;":DISK:STORE SET,""FILE1"""
20 END

Fields and Default Values

The format field is for waveforms only, and the default is INTernal. In TEXT mode, y values
may be specified so that only the y values are stored. VERBose is the default in which y
values and the waveform preamble are stored. Only waveforms of 128K or less may be
written to disk in the TEXT formats. See Chapter 27, “Waveform Commands” for informa-
tion on converting data to values.
15-8

book.book Page 1 Friday, July 12, 2002 1:51 PM
16

CGRade:LEVels? 16-2
CONNect 16-3
DATA? 16-3
DCOLor (Default COLor) 16-3
GRATicule 16-4
LABel 16-4
LABel:DALL 16-5
PERSistence 16-5
RRATe 16-6
SCOLor 16-7
SSAVer 16-8
Display Commands

Display Commands
Display Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Display Commands

The DISPlay subsystem controls the display of data, markers, text, graticules,
and the use of color. You select the display mode using the ACQuire:TYPE
command. Select the number of averages using ACQuire:COUNt.

CGRade:LEVels?

Query :DISPlay:CGRade:LEVels? [CHANnel<N> | FUNCtion<N> | CGMemory]

This query returns the range of hits represented by each color for the speci-
fied source. If no source is specified, the values for the first database signals
turned on is returned. Fourteen values are returned, representing the mini-
mum and maximum count for each of seven colors. The values are returned in
the following order:

• Greatest intensity color minimum
• Greatest intensity color maximum
• Next greatest intensity color minimum
• Next greatest intensity color maximum
•
• Least intensity color minimum
• Least intensity color maximum

Returned Format [:DISPlay:CGRade:LEVels] <color format><NL>

<color format> <intensity color min / max> is an integer value from 0 to 63,488.

Example The following example gets the range of hits represented by each color and
prints it on the controller screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:CGRADE:LEVELS?"
30 ENTER 707;Cgrade$
40 PRINT Cgrade$
50 END
16-2

Display Commands
Display Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
CONNect

Command :DISPlay:CONNect {{ON | 1}|{OFF | 0}}

When enabled, :DISPlay:CONNect draws a line between consecutive wave-
form data points. This is also known as linear interpolation. This command has
no effect on color grade or gray scale displays.

Example This example turns on the connect-the-dots feature.

10 OUTPUT 707;":DISPLAY:CONNECT ON"
20 END

Query :DISPlay:CONNect?

The query returns the status of the connect-the-dots feature.

Returned Format [:DISPlay:CONNect] {1 | 0}<NL>

DATA?

Query :DISPlay:DATA? [<format>[,<screen_mode> [,<inversion>]]]

The query returns information about the captured data. If no options to the
query are specified, the default selections are PCX file type, SCReen mode,
and inversion set to INVert.

<format> The file format: BMP | PCX | EPS | PS | GIF | TIF | JPG.

<screen_mode> The display setting: SCReen | GRATicule.

<inversion> The inversion of the displayed file: NORMal | INVert | MONochrome.

Returned Format [:DISPlay:DATA] <binary_block_data><NL>

<binary_block_data> Data in the IEEE 488.2 definite block format.

DCOLor (Default COLor)

Command :DISPlay:DCOLor

This command (Default COLor) resets the screen colors to the predefined fac-
tory default colors. It also resets the grid intensity.

Example This example sends the DCOLor command.

10 OUTPUT 707;":DISPLAY:DCOLOR"
20 END
16-3

Display Commands
Display Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
GRATicule

Commands :DISPlay:GRATicule {GRID|FRAMe}

:DISPlay:GRATicule:INTensity <intensity_value>

These commands select the type of graticule that is displayed. 86100A analyz-
ers have a 10-by-8 (unit) display graticule grid that you can turn on or off.
When the grid is on, a grid line is place on each vertical and horizontal divi-
sion. When it is off, a frame with tic marks surrounds the graticule edges.

<intensity_value> A number from 0 to 100, indicating the percentage of display intensity.

You can dim the grid's intensity or turn the grid off to better view waveforms
that might be obscured by the graticule lines. Otherwise, you can use the grid
to estimate waveform measurements such as amplitude and period.

When printing, the grid intensity control doesn't affect the hardcopy. To
remove the grid from a printed hardcopy, you must turn off the grid before
printing.

Example This example sets up the analyzer's display background with a frame that is
separated into major and minor divisions.

10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END

Queries :DISPlay:GRATicule?

:DISPlay:GRATicule:INTensity?

The queries return the type of graticule currently displayed, or the intensity,
depending on the query you request.

Returned Format [:DISPlay:GRATicule] {GRID|FRAMe}<NL>

[:DISPlay:GRATicule:INTensity] <value><NL>

Example This example places the current display graticule setting in the string variable,
Setting$, then prints the contents of the variable to the controller's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:GRATICULE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

LABel

Command :DISPlay:LABel “<string_argument>” [,<row>[,<column>[,<text_color>[,<background>]]]]
16-4

Display Commands
Display Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
This command allows you to place a label on the graticule area of the display.
The operator should periodically clear the labels using the LABel:DALL com-
mand.

<string_argument> Any series of ASCII characters enclosed in quotation marks.

<row> 0 to 12, where 0 is the top row and the default

<column> 0 to 61, where 0 is the left column and the default

<text_color> {CHANnel<N> | WHITe} Default is WHITe

<background> {OPAQue | TRANsparent} Default is TRANsparent

Example This example places a label on the upper left corner of the graticule.

10 OUTPUT 707;":DISPLAY:LABEL""This is a label"""
20 END

LABel:DALL

Command :DISPlay:LABel:DALL

This command deletes all labels.

Example This example deletes all labels.

10 OUTPUT 707;":DISPLAY:LABEL:DALL"

20 END

PERSistence

Command :DISPlay:PERSistence {MINimum | INFinite | <persistence_value> | CGRade | GSCale}

This command sets the display persistence. It works in both real time and
equivalent time modes. The parameter for this command can be either MINi-
mum (zero persistence), INFinite, or a real number from 0.1 to 40, represent-
ing the persistence in seconds, with one digit resolution.

<persistence_value> A real number, 0.1 to 40, representing the persistence in seconds.

Persistence Value in Seconds Resolution (Step Size)

0.1 - 0.9 0.1s steps

1 - 10 1s steps

10 - 40 10s steps
16-5

Display Commands
Display Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Mode Eye mode only for CGRade and GSCale arguments.

Example This example sets the persistence to infinite.

10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

Query :DISPlay:PERSistence?

The query returns the current persistence value.

Returned Format [:DISPlay:PERSistence] {MINimum | INFinite | <value> | CGRade | GSCale}<NL>

Example This example places the current persistence setting in the string variable, Set-
ting$, then prints the contents of the variable to the controller's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

RRATe

Command :DISPlay:RRATe <refresh_rate>

This command sets the display refresh rate.

<refresh_rate> The refresh rate sets the refresh time in seconds. The minimum value is
.01seconds, and the maximum value is 3600 seconds.

Example This example sets the display refresh rate to 3 seconds.

10 OUTPUT 707;":DISPlay:RRATe 3"
20 END

Query :DISPlay:RRATe?

The query returns the display refresh rate.

Returned Format [:DISPlay:RRATe] <refresh_rate> <NL>

Example This example places the current display refresh rate in the string array set-
ting.

10 DIM RRATE$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:RRATE? "
30 ENTER 707;RRATE$
40 PRINT RRATE$
50 END

write_IO (“:DISPlay:RRATe?”);
read_IO (Setting, SETTING_SIZE);
16-6

Display Commands
Display Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
SCOLor

Command :DISPlay:SCOLor <color_name>, <hue>, <saturation>, <luminosity>

The DISPlay:SCOLor command sets the color of the specified display element
and restores the colors to their factory settings. The display elements are
described in Table 16-1 on page 16-7.

<color_name> {CGRade1 | CGRADE2 | CGRADE3 | CGRADE4 | CGRADE5 | CGRADE6 | CGRade7 | CHANnel1 |
CHANnel2 | CHANnel3 | CHANnel4 | GRID | MARGin | MARKers | MASK | MEASurements |
WBACkgrnd | WOVerlap | WMEMories | WINText | WINBackgrnd}

Table 16-1. Color Names

Color Name Definition

CGRADE1 First range of pixel counts for the color grade persistence display

CGRADE2 Second range of pixel counts for the color grade persistence display

CGRADE3 Third range of pixel counts for the color grade persistence display

CGRADE4 Fourth range of pixel counts for the color grade persistence display

CGRADE5 Fifth range of pixel counts for the color grade persistence display

CGRADE6 Sixth range of pixel counts for the color grade persistence display

CGRADE7 Seventh range of pixel counts for the color grade persistence display

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

GRID Display element for the grid inside the waveform viewing area.

MARGin Display element for the margins.

MARKers Display element for the markers.

MASK Display element for the masks.

MEASurements Display element for the measurements text.

WBACkgrnd Display element for the waveform viewing area’s background.

WOVerlap Display element for waveforms when they overlap each other.

WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and buttons.
16-7

Display Commands
Display Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
<hue> The hue control sets the color of the chosen display element. As hue is
increased from 0%, the color changes from red, to yellow, to green, to blue, to
purple, then back to red again at 100% hue. For color examples, see the sam-
ple color settings table in the 86100A on-line help file. Pure red is 100%, pure
blue is 67%, and pure green is 33%.

<saturation> The saturation control sets the color purity of the chosen display element. The
saturation of a color is the purity of a color or the absence of white. A 100%
saturated color has no white component. A 0% saturated color is pure white.

<luminosity> The luminosity control sets the color brightness of the chosen display ele-
ment. A 100% luminosity is the maximum color brightness. A 0% luminosity is
pure black.

Example This example sets the hue to 50, the saturation to 70, and the luminosity to
90 for the markers.

10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

Query :DISPlay:SCOLor? <color_name>

The query returns the hue, saturation, and luminosity for the specified color.

Returned Format [:DISPlay:SCOLor] <color_name>, <hue>, <saturation>, <luminosity><NL>

Example This example places the current settings for the graticule color in the string
variable, Setting$, then prints the contents of the variable to the controller's
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:SCOLOR? GRID"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSAVer

Commands :DISPlay:SSAVer {DISabled|ENABled}

:DISPlay:SSAVer:AAFTer <time>

These commands let you disable or enable the analyzer screen saver, and
specify a time before the screen saver turns on.

<time> An integer; either 2, 3, 4, 5, 6, 7, or 8. The time value specifies the amount of
time, in hours, that must pass before the screen saver will turn on.

Example This example enables the analyzer screen saver.

10 OUTPUT 707;":DISPLAY:SSAVER ENABLED"
20 OUTPUT 707;":DISPLAY:SSAVER:AAFT 4"
16-8

Display Commands
Display Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
30 END

Queries :DISPlay:SSAVer?

:DISPlay:SSAVer:AAFTer?

The queries return the state of the screen saver.

Returned Format [:DISPlay:SSAVer] {DISabled|ENABled}<NL>

[:DISPlay:SSAVer:AAFTer] <time><NL>
16-9

book.book Page 10 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
17

DISPlay 17-2
FUNCtion<N>? 17-3
HORizontal 17-4
HORizontal:POSition 17-4
HORizontal:RANGe 17-5
INVert 17-6
MAGNify 17-6
MAXimum 17-7
MINimum 17-7
OFFSet 17-8
RANGe 17-9
SUBTract 17-9
VERSus 17-10
VERTical 17-11
VERTical:OFFSet 17-11
VERTical:RANGe 17-12
Function Commands

Function Commands
Function Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Function Commands

The FUNCtion subsystem defines functions 1–4. The operands of these func-
tions can be any of the installed channels in the analyzer, waveform memories
1–4, functions 1–4, or a constant.

The vertical scaling and offset functions can be controlled remotely using the
RANGe and OFFSet commands in this subsystem. You can obtain the horizon-
tal scaling and position values of the functions using the HORizontal:RANge
and HORizontal:POSition queries in this subsystem.

If a channel is not on but is used as an operand, then that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function uses
the shorter of the two.

If the two operands have the same time scales, the resulting function has the
same time scale. If the operands have different time scales, the resulting func-
tion has no valid time scale. This is because operations are performed based
on the displayed waveform data position, and the time relationship of the data
records cannot be considered. When the time scale is not valid, delta time
pulse parameter measurements have no meaning, and the unknown result
indicator is displayed on the screen.

Constant operands take on the same time scale as the associated waveform
operand.

DISPlay

Command :FUNCtion<N>:DISPlay {{ON | 1} | {OFF | 0}}[,APPend]

This command either displays the selected function or removes it from the
display.

<N> An integer, 1–4, representing the selected function.

APPend This optional parameter is used to turn on additional functions in Eye/Mask
mode without turning off any other database signals that are currently on.
Without the APPend parameter, all other database signals would be turned off
when turning a function on.
17-2

Function Commands
Function Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
Example This example turns function 1 on.

10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

Query :FUNCtion<N>:DISPlay?

The query returns the displayed status of the specified function.

Returned Format [:FUNCtion<N>:DISPlay] {1 | 0}[,APPend]<NL>

Example This example places the current state of function 1 in the variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":FUNCTION1:DISPLAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

FUNCtion<N>?

Query :FUNCtion<N>?

This query returns the currently defined source(s) for the function.

Returned Format [:FUNCtion<N>:<operator>] {<operand> [,<operand>]}<NL>

<N> An integer, 1–4, representing the selected function.

<operator> Active math operation for the selected function: INVert, MAGNify, MAXimum,
MINimum, SUBTract, or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels 1–4,
waveform memories 1–4, or functions 1–4. If the function is applied to a con-
stant, the source returns the constant.

Example This example returns the currently defined source for function 1.

10 OUTPUT 707;":FUNCTION1?"
20 END

If the headers are off (see :SYSTem:HEADers), the query returns only the
operands, not the operator.

10 :SYST:HEAD ON
20 :FUNC1:SUBTRACT CHAN1,CHAN2
30 :FUNC1? !returns :FUNC1:SUBTRACT CHAN1,CHAN2
40 :SYST:HEAD OFF
50 :FUNC1? !returns CHAN1,CHAN2
17-3

Function Commands
Function Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
HORizontal

Command :FUNCtion<N>:HORizontal {AUTO | MANual}

This command sets the horizontal tracking to either AUTO or MANual.

The HORizontal command also includes a subsystem consisting of the follow-
ing commands and queries, which are described on the following pages:

• POSition
• RANGe

<N> An integer, 1–4, representing the selected function.

Query :FUNCtion<N>:HORizontal?

The query returns the current horizontal scaling mode of the specified func-
tion.

Returned Format [:FUNCtion<N>:HORizontal] {AUTO | MANual}<NL>

Example This example places the current state of function 1 horizontal tracking in the
string variable, Setting$, then prints the contents of the variable to the com-
puter's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:HORIZONTAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

HORizontal:POSition

Command :FUNCtion<N>:HORizontal:POSition <position_value>

This command sets the time value at center screen for the selected function.

<N> An integer, 1–4, representing the selected function.

Note

This command applies only to the Magnify and Versus operators.

Note

This command applies only to the Magnify and Versus operators.
17-4

Function Commands
Function Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
<position_value> Position value in time, in seconds.

Query :FUNCtion<N>:HORizontal:POSition?

The query returns the current time value at center screen of the selected
function.

Returned Format [:FUNCtion<N>:HORizontal:POSition] <position><NL>

Example This example places the current horizontal position setting for function 2 in
the numeric variable, Value, then prints the contents to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:HORIZONTAL:POSITION?"
40 ENTER 707;Value
50 PRINT Value
60 END

HORizontal:RANGe

Command :FUNCtion<N>:HORizontal:RANGe <range_value>

This command sets the current time range for the specified function. This
automatically selects manual mode.

<N> An integer, 1–4, representing the selected function.

<range_value> Width of screen in current X-axis units (usually seconds).

Query :FUNCtion<N>:HORizontal:RANGe?

The query returns the current time range setting of the specified function.

Returned Format [:FUNCtion<N>:HORizontal:RANGe] <range><NL>

Note

This command applies only to the Magnify and Versus operators.

Note

This query returns the current time range setting of the specified function only when the
respective function display is ON.
17-5

Function Commands
Function Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Example This example places the current horizontal range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:HORIZONTAL:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END

INVert

Command :FUNCtion<N>:INVert <operand>

This command defines a function that inverts the defined operand's waveform
by multiplying by –1.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}

<N> An integer from 1 to 4.

Example This example sets up function 2 to invert the signal on channel 1.

10 OUTPUT 707;":FUNCTION2:INVERT CHANNEL1"
20 END

MAGNify

Command :FUNCtion<N>:MAGNify <operand>

Functions Used as Operands

A function may be used as a source for another function, subject to the following con-
straints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.
17-6

Function Commands
Function Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
This command defines a function that is a copy of the operand. The magnify
function is a software magnify. No hardware settings are altered as a result of
using this function. It is useful for scaling channels, another function, TDR/
TDT responses or memories with the RANGe and OFFSet commands in this
subsystem.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}

<N> An integer from 1 to 4.

Example This example creates a function (function 1) that is a magnified version of
channel 1.

10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNEL1"
20 END

MAXimum

Command :FUNCtion<N>:MAXimum <operand>

This command defines a function that computes the maximum value of the
operand waveform in each time bucket.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | <float_value>}

<N> An integer from 1 to 4.

MINimum

Command :FUNCtion<N>:MINimum <operand>

Functions Used as Operands

A function may be used as a source for another function, subject to the following con-
straints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.
17-7

Function Commands
Function Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
This command defines a function that computes the minimum value of each
time bucket for the defined operand’s waveform.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | <float_value>}

<N> An integer from 1 to 4.

OFFSet

Command :FUNCtion<N>:OFFSet <offset_value>

This command sets the voltage represented at the center of the screen for the
selected function. This automatically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<offset_value> The offset value is limited to being within the vertical range that can be repre-
sented by the function data.

Example This example sets the offset voltage for function 1 to 2 mV.

10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

Query :FUNCtion<N>:OFFSet?

The query returns the current offset value for the selected function.

Returned Format [:FUNCtion<N>:OFFSet] <offset_value><NL>

Example This example places the current setting for offset on function 2 in the numeric
variable, Value, then prints the result to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:OFFSET?"
40 ENTER 707;Value
50 PRINT Value
60 END

Note

This query returns the current offset value of the specified function only when the
respective function display is ON.
17-8

Function Commands
Function Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
RANGe

Command :FUNCtion<N>:RANGe <full_scale_range>

This command defines the full scale vertical axis of the selected function. This
automatically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<full_scale_range> The full-scale vertical range.

Example This example sets the full scale range for function 1 to 400 mV.

10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

Query :FUNCtion<N>:RANGe?

The query returns the current full scale range setting for the specified func-
tion.

Returned Format [:FUNCtion<N>:RANGe] <full_scale_range><NL>

Example This example places the current range setting for function 2 in the numeric
variable “Value,” then prints the contents to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END

SUBTract

Command :FUNCtion<N>:SUBTract <operand>,<operand>

This command defines a function that algebraically subtracts the second oper-
and from the first operand.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}

Note

This query returns the current full scale range setting of the specified function only when
the respective function display is ON.
17-9

Function Commands
Function Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
<N> An integer from 1 to 4.

Example This example defines a function that subtracts waveform memory 1 from
channel 1.

10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1,WMEMORY1"
20 END

VERSus

Command :FUNCtion<N>:VERSus <operand>,<operand>

This command defines a function for an X-versus-Y display. The first operand
defines the Y axis and the second defines the X axis. The Y-axis range and off-
set are initially equal to that of the first operand and can be adjusted with the
RANGe and OFFSet commands in this subsystem.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}

<N> An integer from 1 to 4.

Example This example defines function 1 as an X-versus-Y display. Channel 1 is the
X axis and waveform memory 2 is the Y axis.

10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2,CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following con-
straints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.
17-10

Function Commands
Function Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
VERTical

Command :FUNCtion<N>:VERTical {AUTO | MANual}

This command sets the vertical scaling mode of the specified function to
either AUTO or MANual.

The VERTical command also contains a subsystem consisting of the following
commands and queries:

• OFFset
• RANge

<N> An integer, 1–4, representing the selected function.

Query :FUNCtion<N>:VERTical?

The query returns the current vertical scaling mode of the specified function.

Returned Format [:FUNCtion<N>:VERTical] {AUTO | MANual}<NL>

Example This example places the current state of the vertical tracking of function 1 in
the string variable, Setting$, then prints the contents of the variable to the
computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

VERTical:OFFSet

Command :FUNCtion<N>:VERTical:OFFSet <offset_value>

Functions Used as Operands

A function may be used as a source for another function, subject to the following con-
straints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.
17-11

Function Commands
Function Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
This command sets the voltage represented at center screen for the selected
function. This automatically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<offset_value> The offset value is limited only to being within the vertical range that can be
represented by the function data.

Query :FUNCtion<N>:VERTical:OFFset?

The query returns the current offset value of the selected function.

Returned Format [:FUNCtion<N>:VERTical:OFFset] <offset_value><NL>

Example This example places the current offset setting for function 2 in the numeric
variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:VERTICAL:OFFSET?"
40 ENTER 707;Value
50 PRINT Value
60 END

VERTical:RANGe

Command :FUNCtion<N>:VERTical:RANGe <full_scale_range>

This command defines the full-scale vertical axis of the selected function. This
automatically changes the mode from auto to manual, if the scope is not
already in manual mode.

<N> An integer, 1–4, representing the selected function.

<full_scale_range> The full-scale vertical range.

Query :FUNCtion<N>:VERTical:RANGe?

The query returns the current range setting of the specified function.

Note

This query returns the current offset value of the specified function only when the
respective function display is ON.

Note

This query returns the current range setting of the specified function only when the
respective function display is ON.
17-12

Function Commands
Function Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
Returned Format [:FUNCtion<N>:VERTical:RANGe] <range><NL>

Example This example places the current vertical range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:VERTICAL:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END
17-13

Function Commands
Function Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
17-14

book.book Page 1 Friday, July 12, 2002 1:51 PM
18

AREA 18-2
DPRinter 18-2
FACTors 18-4
IMAGe 18-5
PRINters? 18-5
Hardcopy Commands

Hardcopy Commands
Hardcopy Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Hardcopy Commands

The HARDcopy subsystem commands set various parameters for printing the
screen. The print sequence is activated when the root level :PRINt command
is sent.

AREA

Command :HARDcopy:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be printed. When you
select GRATicule, only the graticule area of the screen is printed (this is the
same as choosing Waveforms Only in the Configure Printer dialog box). When
you select SCReen, the entire screen is printed.

Example This example selects the graticule for printing.

10 OUTPUT 707;":HARDCOPY:AREA GRATICULE"
20 END

Query :HARDcopy:AREA?

The query returns the current setting for the area of the screen to be printed.

Returned Format [:HARDcopy:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be printed in the
string variable, Selection$, then prints the contents of the variable to the com-
puter's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

DPRinter

Command :HARDcopy:DPRinter {<printer_number>|<printer_string>}

This command selects the default printer to be used.
18-2

Hardcopy Commands
Hardcopy Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
<printer_number> An integer representing the attached printer. This number corresponds to the
number returned with each printer name by the ":HARDcopy:PRINters?"
query.

<printer_string> A string of alphanumeric characters representing the attached printer.

The HARDcopy:DPRinter command specifies a number or string for the
printer attached to the analyzer. The printer_string must exactly match the
character strings in the File, Print Setup dialog boxes, or the strings returned
by the ":HARDcopy:PRINters?" query.

Examples This example sets the default printer to the second installed printer returned
by the :HARDcopy:PRINters? query.

10 OUTPUT 707;":HARDCOPY:DPRINTER 2"
20 END

This example sets the default printer to the installed printer with the name
"HP Laser".

10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

Query :HARDcopy:DPRinter?

The query returns the current printer number and string.

Returned Format [:HARDcopy:DPRinter?] {<printer_number>,<printer_string>,DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is
returned.

Example This example places the current setting for the hardcopy printer in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:DPRinter?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Programs Must Wait After Changing the Default Printer

It takes several seconds to change the default printer. Any programs that try to set the
default printer must wait (10 seconds is a safe amount of time) for the change to complete
before sending other commands. Otherwise the analyzer will become unresponsive.
18-3

Hardcopy Commands
Hardcopy Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
FACTors

Command :HARDcopy:FACTors {{ON | 1}|{OFF | 0}}

This command determines whether the analyzer setup factors will be
appended to screen or graticule images. FACTors ON is the same as choosing
Include Setup Information in the Configure Printer dialog box.

Example This example turns on the setup factors.

10 OUTPUT 707;":HARDCOPY:FACTORS ON"
20 END
18-4

Hardcopy Commands
Hardcopy Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
Query :HARDcopy:FACTors?

The query returns the current setup factors setting.

Returned Format [:HARDcopy:FACTors] {1|0}<NL>

Example This example places the current setting for the setup factors in the string vari-
able, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:FACTORS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

IMAGe

Command :HARDcopy:IMAGe {NORMal | INVert | MONochrome}

This command prints the image normally, inverted, or in monochrome. IMAGe
INVert is the same as choosing Invert Waveform Colors in the Configure
Printer dialog box.

Example This example sets the hardcopy image output to normal.

10 OUTPUT 707;":HARDCOPY:IMAGE NORMAL"
20 END

Query :HARDcopy:IMAGe?

The query returns the current image setting.

Returned Format [:HARDcopy:IMAGe] {NORMal | INVert | MONochrome}<NL>

Example This example places the current setting for the hardcopy image in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

PRINters?

Query :HARDcopy:PRINters?

This query returns the currently available printers.

Returned Format [:HARDcopy:PRINters]<printer_count><NL><printer_data><NL>[,<printer_data><NL>]
18-5

Hardcopy Commands
Hardcopy Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
<printer_count> Number of printers currently installed.

<printer_data> The printer number and the name of an installed printer. The word DEFAULT
appears next to the printer that is the currently selected default printer.

Example This example places the number of installed printers into the variable Count,
loops through that number of times, and prints the installed printer names to
the computer screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:PRINTERS?"
30 ENTER 707;Count
40 IF Count>0 THEN
50 FOR Printer_number=1 TO Count
60 ENTER 707;Setting$
70 PRINT Setting$
80 NEXT Printer_number
90 END IF
100 END
18-6

book.book Page 1 Friday, July 12, 2002 1:51 PM
19

AXIS 19-4
MODE 19-4
SCALe:SIZE 19-5
SOURce 19-5
WINDow:BORDer 19-6
WINDow:DEFault 19-6
WINDow:SOURce 19-6
WINDow:X1Position 19-7
WINDow:X2Position 19-8
WINDow:Y1Position 19-8
WINDow:Y2Position 19-9
Histogram Commands

Histogram Commands
Histogram Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Histogram Commands

The Histogram commands and queries control the histogram features. A histo-
gram is a probability distribution that shows the distribution of acquired data
within a user-definable histogram window. You can display the histogram
either vertically, for voltage measurements, or horizontally, for timing mea-
surements.

The most common use for histograms is measuring and characterizing noise or
jitter on displayed waveforms. Noise is measured by sizing the histogram win-
dow to a narrow portion of time and observing a vertical histogram that mea-
sures the noise on a waveform. Jitter is measured by sizing the histogram
window to a narrow portion of voltage and observing a horizontal histogram
that measures the jitter on an edge.
19-2

Histogram Commands
Histograms and the Database

book.book Page 3 Friday, July 12, 2002 1:51 PM
Histograms and the Database

The histograms, mask testing, and color-graded (including gray scale) display
use a specific database that uses a different memory area from the waveform
record for each channel. When any of these features are turned on, the instru-
ment starts building the database. The database is the size of the graticule
area. Behind each pixel is a 16-bit counter that is incremented each time data
from a channel or function hits a pixel. The maximum count (saturation) for
each counter is 63,488. You can use the :MEASure:CGRade:PEAK? or
DISPlay:CGRade:LEVels? queries to see if any of the counters are close to sat-
uration.

The database continues to build until the instrument stops acquiring data or
all three functions (color-graded display, mask testing, and histograms) are
turned off. You can set the ACQuisition:RUNTil (Run Until) mode to stop
acquiring data after a specified number of waveforms or samples are acquired.
You can clear the database by turning off all three features that use the data-
base.

The database does not differentiate waveforms from different channels or
functions. If three channels are turned on and the waveform from each chan-
nel happens to light the same pixel at the same time, the counter is incre-
mented by three. However, it is not possible to tell how many hits came from
each waveform. To separate waveforms, you can set the display to two graphs
or position the waveforms vertically with the channel offset. By separating the
waveforms, you can avoid overlapping data in the database caused by multiple
waveforms. Although multiple waveforms may be displayed in Oscilloscope
mode, histogram measurements can be made on only one at a time. Set the
histogram window source to the source you want to measure. Even if the dis-
play is set to show only the most recent acquisition, the database keeps track
of all pixel hits while the database is building.

Remember that color-graded display, mask testing, and histograms all use the
same database. Suppose that the database is building because color-graded
display is ON; when mask testing or histograms are turned on, they can use
the information already established in the database as though they had been
turned on the entire time.

To avoid erroneous data, clear the display after you change instrument setup
conditions or device under test (DUT) conditions and acquire new data before
extracting measurement results.
19-3

Histogram Commands
Histogram Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Histogram Commands

AXIS

Command :HISTogram:AXIS {VERTical | HORizontal}

This command selects the axis of the histogram. A horizontal or vertical histo-
gram may be created.

Example The following example defines a vertical histogram.

10 OUTPUT 707;”:HISTOGRAM:AXIS VERTICAL”
20 END

Query :HISTogram:AXIS?

The query returns the currently selected histogram axis.

Returned Format [:HISTogram:AXIS] {VERTical | HORizontal} <NL>

Example 10 DIM Axis$[50]
20 OUTPUT 707;”:HISTOGRAM:AXIS?”
30 ENTER 707;Axis$
40 PRINT Axis$
50 END

MODE

Command :HISTogram:MODE {ON | OFF | WAVeform}

This command selects the histogram mode. The histogram may be off or set
on, to track the waveform database. WAVeform is the same as ON and exists
for backward compatibility.

Example The following example sets the histogram mode to track the waveform data-
base.

10 OUTPUT 707;”:HISTOGRAM:MODE WAVEFORM”
20 END

Query :HISTogram:MODE?

The query returns the currently selected histogram mode.

Returned Format [:HISTogram:MODE] {ON | OFF } <NL>
19-4

Histogram Commands
Histogram Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
Example The following example returns the result of the mode query and prints it to
the controller’s screen.

10 DIM Mode$[10]
20 OUTPUT 707;”:HISTOGRAM:MODE?”
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

SCALe:SIZE

Command :HISTogram:SCALe:SIZE <size> [,{HORizontal | VERTical}]

This command sets the histogram size for vertical and horizontal mode.

<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the
vertical mode. Separate values are maintained for each axis. If the optional
axis parameter is not specified, the size of the current axis is set.

Example The following example sets the histogram size to 3.5.

10 OUTPUT 707;”:HISTOGRAM:SCALE:SIZE 3.5”
20 END

Query :HISTogram:SCALe:SIZE? [HORizontal | VERTical]

The query returns the correct size of the histogram.

Returned Format [:HISTogram:SCALe:SIZE] <size><NL>

Example The following example returns the result of the size query and prints it to the
controller’s screen.

10 DIM Scal$[50]
20 OUTPUT 707;”:HISTOGRAM:SCALE:SIZE?”
30 ENTER 707;Size$
40 PRINT Size$
50 END

SOURce

Command :HISTogram:SOURce {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGMemory}

This command selects the source of the histogram window. The histogram
window will track the source’s vertical and horizontal scale. If the optional
append parameter is not used when a .cgs file is loaded, the window source is
set to CGMemory. No other source may be selected until the histogram data-
base is cleared.

<N> An integer, 1 through 4.
19-5

Histogram Commands
Histogram Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Example The following example sets the histogram source to channel 1.

10 OUTPUT 707;”:HISTOGRAM:SOURCE CHANNEL1”
20 END

Query :HISTogram:SOURce?

The query returns the currently selected histogram source.

Returned Format [:HISTogram:SOURce] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGM}<NL>

Example The following example gets the current histogram source setting, which was
set by the previous :HISTogram:SOURce command.

write_IO (“:HISTogram:SOURce?”);
read_IO (Setting, SETTING_SIZE);

WINDow:BORDer

Command :HISTogram:WINDow:BORDer {ON | 1 | OFF | 0}

This command turns the histogram window border on or off.

Example The following example enables the display of the histogram window border.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:BORDER ON”
20 END

Query :HISTogram:WINDow:BORDer?

The query returns the current histogram window border setting.

Returned Format [:HISTogram:WINDow:BORDer] {ON | OFF}<NL>

WINDow:DEFault

Command :HISTogram:WINDow:DEFault

This command positions the histogram markers to a default location on the
display. Each marker will be positioned one division off the left, right, top, and
bottom of the display.

Example The following example sets the histogram window to the default position.

10 OUTPUT 707;”:HISTogram:WINDow:DEFault”
20 END

WINDow:SOURce

Command :HISTogram:WINDow:SOURce {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGMemory}
19-6

Histogram Commands
Histogram Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
This command selects the source of the histogram window. The histogram
window will track the source’s vertical and horizontal scale. If the optional
append parameter is not used when a .cgs file is loaded, the window source is
set to CGMemory. No other source may be selected until the histogram data-
base is cleared.

<N> An integer 1–4, representing the selected function.

Example The following example sets the histogram window’s source to Channel 1.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:SOURCE CHANNEL1”
20 END

Query :HISTogram:WINDow:SOURce?

The query returns the currently selected histogram window source.

Returned Format [:HISTogram:WINDow:SOURce] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGM}<NL>

Example The following example returns the result of the window source query and
prints it to the controller’s screen.

10 DIM Winsour$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:SOURCE?”
30 ENTER 707;Winsour$
40 PRINT Winsour$
50 END

WINDow:X1Position

Command :HISTogram:WINDow:X1Position <X1 position>

This command moves the X1 marker of the histogram window. The histogram
window selects a portion of the database to histogram. The histogram window
markers will track the scale of the histogram window source.

Example The following example sets the X1 position to –200 microseconds.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:X1POSITION -200E-6”
20 END

Query :HISTogram:WINDow:X1Position?

The query returns the value of the X1 histogram window marker.

Returned Format [:HISTogram:WINDow:X1Position]<X1 position><NL>

Compatibility with the Agilent 83480A/54750A

The :WINDow:SOURce command serves the same function as the :SOURce command
and has been retained for compatibility with the Agilent 83480A/54750A.
19-7

Histogram Commands
Histogram Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
Example The following example returns the result of the X1 position query and prints it
to the controller’s screen.

10 DIM X1$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:X1POSITION?”
30 ENTER 707;X1$
40 PRINT X1$
50 END

WINDow:X2Position

Command :HISTogram:WINDow:X2Position <X2 position>

This command moves the X2 marker of the histogram window. The histogram
window selects a portion of the database to histogram. The histogram window
markers will track the scale of the histogram window source.

Example The following example sets the X2 marker to 200 microseconds.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:X2POSITION 200E-6”
20 END

Query :HISTogram:WINDow:X2Position?

The query returns the value of the X2 histogram window marker.

Returned Format [:HISTogram:WINDow:X2Position] <X2 position><NL>

Example The following example returns the result of the X2 position query and prints it
to the controller’s screen.

10 DIM X2$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:X2POSITION?”
30 ENTER 707;X2$
40 PRINT X2$
50 END

WINDow:Y1Position

Command :HISTogram:WINDow:Y1Position <Y1 position>

This command moves the Y1 marker of the histogram window. The histogram
window selects a portion of the database to histogram. The histogram window
markers will track the scale of the histogram window source.

Example The following example sets the position of the Y1 marker to –250 mV.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:Y1POSITION -250E-3”
20 END

Query :HISTogram:WINDow:Y1Position?
19-8

Histogram Commands
Histogram Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
The query returns the value of the Y1 histogram window marker.

Returned Format [:HISTogram:WINDow:Y1Position] <Y1 position><NL>

Example The following example returns the result of the Y1 position query and prints it
to the controller’s screen.

10 DIM Y1$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:Y1POSITION?”
30 ENTER 707;Y1$
40 PRINT Y1$
50 END

WINDow:Y2Position

Command :HISTogram:WINDow:Y2Position <Y2 position>

This command moves the Y2 marker of the histogram window. The histogram
window selects a portion of the database to histogram. The histogram window
markers will track the scale of the histogram window source.

Example The following example sets the position of the Y2 marker to 1.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:Y2POSITION 1”
20 END

Query :HISTogram:WINDow:Y2Position?

The query returns the value of the Y2 histogram window marker.

Returned Format [:HISTogram:WINDow:Y2Position] <Y2 position><NL>

Example The following example returns the result of the Y2 position query and prints it
to the controller’s screen.

10 DIM Y2$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:Y2POSITION?”
30 ENTER 707;Y2$
40 PRINT Y2$
50 END
19-9

book.book Page 10 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
20

FAIL 20-3
LLIMit 20-4
MNFound 20-4
RUNTil 20-6
SOURce 20-7
SSCReen 20-8
SSCReen:AREA 20-9
SSCReen:IMAGe 20-10
SSUMmary 20-10
SWAVeform 20-11
SWAVeform:RESet 20-12
TEST 20-12
ULIMit 20-13
Limit Test Commands

Limit Test Commands
Limit Test Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Limit Test Commands

The Limit Test commands and queries control the limit test features of the
analyzer. Limit testing automatically compares measurement results with pass
or fail limits. The limit test tracks up to four measurements. The action taken
when the test fails is also controlled with commands in this subsystem.
20-2

Limit Test Commands
Limit Test Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
FAIL

Command :LTESt:FAIL {INSide | OUTSide | ALWays | NEVer}

This command sets the fail condition for an individual measurement. The con-
ditions for a test failure are set on the source selected with the last
LTESt:SOURce command. When a measurement failure is detected by the
limit test, the fail action conditions are executed, and there is the potential to
generate an SRQ.

INSide FAIL:INside causes the instrument to fail a test when the measurement results
are within the parameters set by the LTESt:LLIMit and LTESt:ULIMit com-
mands.

OUTSide FAIL:OUTside causes the instrument to fail a test when the measurement
results exceed the parameters set by LTESt:LLIMit and LTESt:ULIMit com-
mands.

ALWays FAIL:ALWays causes the instrument to fail a test every time the measurement
is executed, and the parameters set by the LTESt:LLIMit and LTESt:ULIMit
commands are ignored. The FAIL:ALWays mode logs the action each time the
measurement is executed. FAIL:ALWays can monitor trends in measurements,
for example, tracking a measurement during an environmental test while the
instrument is running a measurement for a long time, as the temperature or
humidity is changed. Each time the measurement is executed, the results are
logged as determined by the fail action set with the LTESt:SSCreen,
LTESt:SSUMmary, or LTESt:SWAVeform commands.

NEVer FAIL:NEVer sets the instrument so a measurement never fails a test. Use the
FAIL:NEVer mode to observe one measurement but determine a failure from a
different measurement. The FAIL:NEVer mode monitors a measurement with-
out any fail criteria.

Example The following example causes the instrument to fail a test when the measure-
ments are outside the lower and upper limits.

10 OUTPUT 707;”:LTEST:FAIL OUTSIDE”
20 END

Query :LTESt:FAIL?

The query returns the current value set for the fail condition.

Returned Format [:LTESt:FAIL] {INSIDELIMITS| OUTSIDELIMITS| ALWAYSFAIL| NEVERFAIL}<NL>
20-3

Limit Test Commands
Limit Test Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Example The following example returns the current fail condition and prints the result
to the controller’s screen.

10 DIM FAIL$[50]
20 OUTPUT 707;”:LTEST:FAIL?”
30 ENTER 707;FAIL$
40 PRINT FAIL$
50 END

LLIMit

Command :LTESt:LLIMit <lower_value>

This command sets the lower test limit for the active measurement currently
selected by the :LTESt:SOURce command.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.

10 OUTPUT 707;”:LTEST:LLIMIT 1”
20 END

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command,
then set the limit test to fail when the signal is outside the specified limit.

Query :LTESt:LLIMit?

The query returns the current value set by the command.

Returned Format [:LTESt:LLIMit]<lower_value><NL>

Example The following example returns the current lower test limit and prints the
result to the controller’s screen.

10 DIM LLIM$[50]
20 OUTPUT 707;”:LTEST:LLIMIT?”
30 ENTER 707;LLIM$
40 PRINT LLIM$
50 END

MNFound

Command :LTESt:MNFound {FAIL | PASS | IGNore}

This command sets the action to take when the measurement cannot be made.
This command affects the active measurement currently selected by the last
LTESt:SOURce command.
20-4

Limit Test Commands
Limit Test Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
This command tells the instrument how to treat a measurement that cannot
be made. For example, if a risetime between 1 to 5 volts is requested and the
captured signal is between 2 to 3 volts, this control comes into play. Another
use for this command is when trying to measure the frequency of a baseline
waveform.

FAIL FAIL is used when the instrument cannot make a measurement, for example,
when an edge is expected to be present and is not found. This is the mode to
use for most applications.

The total number of waveforms is incremented, and the total number of fail-
ures is incremented.

PASS PASS might be used when triggering on one event and measuring another
event which may not occur for every trigger. For example, in a communica-
tions test system, you might want to trigger on the clock and test the risetime
of edges in the data stream. However, there may be no way to guarantee that a
rising edge will be present to measure in the data stream at every clock edge.
By using the PASS parameter, the limit test will not log a failure if there is no
edge found in the data stream.

If the measurement cannot be made, the total number of waveforms measured
is incremented, but the total number of failures is not.

IGNore IGNore is similar to PASS, except the totals for the number of waveforms and
failures are not incremented. Therefore, the total indicates the number of
tests when the measurement was made.

Example The following example causes the instrument to pass the test when a mea-
surement cannot be made.

10 OUTPUT 707;”:LTEST:MNFOUND PASS”
20 END

Query :LTESt:MNFound?

The query returns the current action set by the command.

Returned Format [:LTESt:MNFound] {FAIL | PASS | IGNore}<NL>

Example The following example gets the current setting of the measurement not found
action and prints the result to the controller’s screen.

10 DIM MNF$[50]
20 OUTPUT 707;”:LTEST:MNFOUND?”
30 ENTER 707;MNF$
40 PRINT MNF$
50 END
20-5

Limit Test Commands
Limit Test Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
RUNTil

Command :LTESt:RUNTil FAILures, <total_failures>

This command determines the termination conditions for the test.

FAILures FAILures runs the limit test until a set number of failures occur. When FAIL-
ures is sent, the test executes until the selected total failures are obtained.
The number of failures are compared against this number to test for termina-
tion.

Use the FAILures mode when you want the limit test to reach completion after
a set number of failures. The total number of failures is additive for all of the
measurements. For example, if you select 10 failures, the total of 10 failures
can come from several measurements. The 10 failures can be the sum of four
rise time failures, four +width failures, and two overshoot failures.

<total_failures> An integer: 1 to 1,000,000,000.

Example The following example causes limit test to run until two failures occur.

10 OUTPUT 707;”:LTEST:RUNTil FAILures, 2”
20 END

Query :LTESt:RUNTil?

The query returns the currently selected termination condition and value.

Returned Format [:LTESt:RUNTil] {FAILures, <total_failures>}<NL>

Example The following example returns the current condition under which the limit
test terminates and prints the result to the controller’s screen.

10 DIM RUN$[50]
20 OUTPUT 707;”:LTEST:RUNTIL?”
30 ENTER 707;RUN$
40 PRINT RUN$

Note

The keywords RUN or RUMode (Run Until Mode) may also be used. This command is
compatible with the Agilent 83480/54750.

Note

To run for a number of waveforms or samples, refer to ACQuire:RUNTil command on
page 11-5.
20-6

Limit Test Commands
Limit Test Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
50 END

SOURce

Command :LTESt:SOURce {1 | 2 | 3 | 4}

This command selects the current source for the ULIMit, LLIMit, MNFound,
and FAIL commands. It selects one of the active measurements as referred to
by their position in the measurement window on the bottom of the screen.
Source 1 is the measurement on the top line, 2 is on the second line, and so
on.

Example The following example selects the first measurement as the source for the
limit testing commands.

10 OUTPUT 707;”:LTEST:SOURCE 1”
20 END

Query :LTESt:SOURce?

The query returns the currently selected measurement source.

Returned Format [:LTESt:SOURce] {1 | 2 | 3 | 4} <NL>

Example The following example returns the currently selected measurement source for
the limit testing commands.

10 DIM SOURCE$[50]
20 OUTPUT 707;”:LTEST:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END

Note

As a measurement is activated, the associated measurement limit test is programmed
according to default values expressed by the following script:

:LTESt:SOURce <N>
:LTESt:FAIL OUTSIde
:LTESt:LLIMIt -10
:LTESt:ULIMIt 10
:LTESt:MNFound FAIL
:LTESt:RUNTil FAILUres, 1

Before a measurement limit test is initiated, you must make the necessary adjustments
to the default values otherwise these values will be used during the limit test.
20-7

Limit Test Commands
Limit Test Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
See Also Measurements are started in the Measurement subsystem.

SSCReen

Command :LTESt:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen in the event of a failure.

OFF Turns off the save action.

DISK Saves a copy of the screen to disk in the event of a failure.

<filename> An ASCII string enclosed in quotations marks. If no filename is specified, a
filename will be assigned. The default filename is MeasLimitScreenX.bmp,
where X is an incremental number assigned by the instrument.

The filename field encodes the network path and the directory in which the
file will be saved, as well as the file format that will be used. The following is a
list of valid filenames.

Note

The save screen options established by the commands LTESt:SSCReen DISK,
LTESt:SSCReen:AREA, and LTESt:SSCReen:IMAG are stored in the instrument’s memory
and will be employed in consecutive save screen operations, until changed by the user.
This includes the <filename> parameter for the LTESt:SSCReen DISK command. If the
results of consecutive limit tests must be stored in different files, omit the
<filename> parameter and use the default filename instead. Each screen image will be
saved in a different file named MeasLimitScreenX.bmp, where X is an incremental num-
ber assigned by the instrument.

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” C:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.
20-8

Limit Test Commands
Limit Test Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
If a filename is specified without a path, the default path will be
C:\User Files\screen images. The default file type is a bitmap
(.bmp). The following graphics formats are available by specifying a file exten-
sion: PCX files (.pcx), EPS files (.eps), Postscript files (.ps), JPEG (.jpg),
TIFF (.tif) and GIF files (.gif).

Example The following example saves a copy of the screen to the disk in the event of a
failure. Additional disk-related controls are set using the SSCReen:AREA and
SSCReen:IMAGe commands.

10 OUTPUT 707;”:LTEST:SSCREEN DISK”
20 END

Query :LTESt:SSCReen?

The query returns the current state of the SSCReen command.

Returned Format [:LTESt:SSCReen] {OFF | DISK [,<filename>]}<NL>

Example The following example returns the destination of the save screen when a fail-
ure occurs and prints the result to the controller’s screen.

10 DIM SSCR$[50]
20 OUTPUT 707;”:LTESt:SSCREEN?”
30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA

Command :LTESt:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when
the run until condition is met. When you select GRATicule, only the graticule
area of the screen is saved (this is the same as choosing Waveforms Only in
the Specify Report Action for measurement limit test dialog box). When you
select SCReen, the entire screen is saved.

Example This example selects the graticule for printing.

10 OUTPUT 707;":LTESt:SSCReen:AREA GRATICULE"
20 END

Query :LTESt:SSCReen:AREA?

The query returns the current setting for the area of the screen to be saved.

Returned Format [:LTESt:SSCReen:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be saved in the string
variable, Selection$, then prints the contents of the variable to the computer's
screen.
20-9

Limit Test Commands
Limit Test Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":LTEST:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe

Command :LTESt:SSCReen:IMAGe {NORMal | INVert | MONochrome}

This command saves the image normally, inverted, or in monochrome. IMAGe
INVert is the same as choosing Invert Waveform Background in the Specify
Report Action for measurement limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":LTESt:SSCReen:IMAGE NORMAL"
20 END

Query :LTESt:SSCReen:IMAGe?

The query returns the current image setting.

Returned Format [:LTESt:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>

Example This example places the current setting for the image in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":LTEST:SSCREEN:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSUMmary

Command :LTESt:SSUMmary {OFF | DISK [,<filename>]}

This command saves the summary in the event of a failure.

When set to disk, the summary is written to the disk drive. The summary is a
logging method where the user can get an overall view of the test results. The
summary is an ASCII file that the user can read on the computer or place into
a spreadsheet.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the
default filename will be MeasLimitSummaryX.sum, where X is an incremen-
tal number assigned by the instrument. If a filename is specified without a
path, the default path will be C:\User files\limit summaries.
20-10

Limit Test Commands
Limit Test Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
Example The following example saves the summary to a disk file named TEST.sum.

10 OUTPUT 707;”:LTEST:SSUMMARY DISK,TEST”
20 END

Query :LTESt:SSUMmary?

The query returns the current specified destination for the summary.

Returned Format [:LTESt:SSUMmary] {OFF | DISK {,<filename>}}<NL>

Example The following example returns the current destination for the summary and
prints the results to the controller’s screen.

10 DIM SUMM$[50]
20 OUTPUT 707;”:LTEST:SSUMMARY?”
30 ENTER 707;SUMM$
40 PRINT SUMM$
50 END

SWAVeform

Command :LTESt:SWAVeform <source>, <destination>[,<filename>[, <format>]]

This command saves waveforms from a channel, function, TDR response or
waveform memory in the event of measurement limit test termination, as
specified by the :LTEST:RUNTil command. Each waveform source can be indi-
vidually specified, allowing multiple channels, responses or functions to be
saved to disk or waveform memories. Setting a particular source to OFF
removes any waveform save action from that source.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<destination> {OFF | WMEMory<N> | DISK}

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the
assigned filename will be MeasLimitChN_X, MeasLimitFnN_X,
MeasLimitRspN_X, or MeasLimitMemN_X, where X is an incremental num-
ber assigned by the instrument. If no path is specified, the default path will be
C:\User Files\waveforms.

Note

If the summary of consecutive limit tests is to be stored in separate files, omit the <file-
name> parameter. Limit test summaries will be stored in files named
MeasLimitSummaryX.sum, where X is an incremental number assigned by the instru-
ment.
20-11

Limit Test Commands
Limit Test Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
<format> {TEXT [,YVALues | VERBose] | INTernal}

where INTernal is the default value, and VERBose is the default value for
TEXT.

Example The following example turns off the saving of waveforms from channel 1 in the
event of a limit test failure.

10 OUTPUT 707;”:LTEST:SWAVEFORM CHAN1,OFF”
20 END

Query :LTESt:SWAVeform? <source>

The query returns the current state of the :LTESt:SWAVeform command.

Returned Format [:LTESt:SWAVeform]<source>, <destination>, [<filename>[,<format>]]<NL>

Example The following example returns the current parameters for saving waveforms
in the event of a limit test failure.

10 DIM SWAV$[50]
20 OUTPUT 707;”:LTEST:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet

Command :LTESt:SWAVeform:RESet

This command sets the save destination for all waveforms to OFF. Setting a
source to OFF removes any waveform save action from that source. This is a
convenient way to turn off all saved waveforms if it is unknown which are
being saved.

Example 10 OUTPUT 707;”:LTEST:SWAVeform:RESet”
20 END

TEST

Command :LTESt:TEST {ON | 1 | OFF | 0}

Note

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.
20-12

Limit Test Commands
Limit Test Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
This command controls the execution of the limit test function. ON allows the
limit test to run over all of the active measurements. When the limit test is
turned on, the limit test results are displayed on screen in a window below the
graticule.

Example The following example turns off the limit test function.

10 OUTPUT 707;”:LTEST:TEST OFF”
20 END

Query :LTESt:TEST?

The query returns the state of the TEST control.

Returned Format [:LTESt:TEST] {1 | 0} <NL>

Example The following example returns the current state of the limit test (on or off,
1 or 0, respectively) and prints the result to the controller’s screen.

10 DIM TEST$[50]
20 OUTPUT 707;”:LTEST:TEST?”
30 ENTER 707;TEST$
40 PRINT TEST$
50 END

ULIMit

Command :LTESt:ULIMit <upper_value>

This command sets the upper test limit for the active measurement currently
selected by the last :LTESt:SOURce command.

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measure-
ment to 500 mV.

10 OUTPUT 707;”:LTEST:ULIMIT 500E-3”

Note

The results of the MEAS:RESults? query have three extra fields when LimitTESt:TEST is
ON (failures, total, status). Failures is a number, total is a number, and status is one of
the following values:

0 OK
1 failed high
2 failed low
3 failed inside
4 other failures
20-13

Limit Test Commands
Limit Test Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
20 END

Suppose you are measuring the maximum voltage of a signal with Vmax, and
that voltage should not exceed 500 mV. You can use the above program and
set the LTESt:FAIL OUTSide command to specify that the limit subsystem will
fail a measurement when the voltage exceeds 500 mV.

Query :LTESt:ULIMit?

The query returns the current upper limit of the limit test.

Returned Format [:LTESt:ULIMit] <upper_value><NL>

Example The following example returns the current upper limit of the limit test and
prints the result to the controller’s screen.

10 DIM ULIM$[50]
20 OUTPUT 707;”:LTEST:ULIMIT?”
30 ENTER 707;ULIM$
40 PRINT ULIM$
50 END
20-14

book.book Page 1 Friday, July 12, 2002 1:51 PM
21

PROPagation 21-2
RPANnotation 21-3
STATe 21-3
X1Position 21-4
X1Y1source 21-5
X2Position 21-5
X2Y2source 21-6
XDELta? 21-6
XUNITs 21-7
Y1Position 21-7
Y2Position 21-8
YDELta? 21-9
YUNITs 21-9
Marker Commands

Marker Commands
Marker Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Marker Commands

The commands in the MARKer subsystem are used to specify and query the
settings of the time markers (X axis) and current measurement unit markers
(volts, amps, and watts for the Y axis). The Y-axis measurement units are typ-
ically set using the CHANnel:UNITs command.

PROPagation

Command :MARKer:PROPagation {DIELectric | METer},<propagation>

This command sets the propagation velocity for TDR and TDT measurements.
The propagation may be specified as a dielectric constant or in meters per sec-
ond. The value is used to determine the distance from the reference plane in
TDR and TDT marker measurements.

<propagation> Dielectric constant or propagation value. You must specify one of the modifi-
ers DIELectric or METer.

Example The following example sets the propagation to 30 million meters per second.

10 OUTPUT 707;":MARKER:PROPAGATION METER, 3E7"
20 END

Query :MARKer:PROPagation?

The query returns the current propagation value.

Returned Format [:MARKer:PROPagation]<propagation> {DIELectric | METer}<NL>

Note

To ensure accurate marker measurements, you must ensure that the propagation value is
accurate, and that the units are set correctly (:MARKer:XUNITs). Propagation delay is
always measured with respect to the reference plane.
21-2

Marker Commands
Marker Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
Example The following example gets the propagation value from the instrument, puts it
into the variable, Prop$, then displays the contents of the variable on the con-
troller’s screen.

10 DIM Prop$[20] !Declare variable
20 OUTPUT 707;":MARKER:PROPAGATION?"
30 ENTER 707;Prop$
40 PRINT Prop$
50 END

RPANnotation

Command :MARKer:RPANnotation { {OFF | 0} | {ON | 1}}

This command sets the reference plane annotation on or off. The annotation is
depicted as an inverted orange triangle positioned along the top of the grati-
cule.

Example The following example turns off the reference plane annotation.

10 OUTPUT 707;":MARKER:RPANNOTATION OFF"
20 END

Query :MARKer:RPANnotation?

The query returns the status of the reference plane annotation.

Returned Format [:MARKer:RPANnotation] {ON | OFF} <NL>

Example The following example reads the status of the reference plane annotation,
writes it to the variable RPAN$, and displays its contents on the controller’s
screen.

10 DIM RPAN$[50]
20 Output 707;":MARKer:RPANnotation? X2Y2"
30 ENTER 707;RPAN$
40 PRINT RPAN$
50 END

STATe

Command :MARKer:STATe <marker_pair>,<X_marker_state>,<Y_marker_state>

This command sets the state of a marker pair.

<marker_pair> {X1Y1 | X2Y2}

Specifies which marker pair state is set.

<X_marker_state> {OFF | MANual}

Turns the X marker on or off.
21-3

Marker Commands
Marker Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
<Y_marker_state> {OFF | MANual | TRACk>

Turns the Y marker off, or sets to manual placement, or sets to tracking the
source waveform at the X position. TRACk is allowed only with the
X_marker_state of manual. TRACk is not allowed in Eye/Mask mode.

Example This example sets the X1 marker to manual and the Y1 marker to track the
source waveform at the current X1 position.

10 OUTPUT 707;":MARKer:STATe X1Y1, MANual, TRACk"

20 END

Query :MARKer:STATe? {X1Y1 | X2Y2}

Returns the states of the specified marker pair.

Returned Format [:MARKer:STATe] {X1Y1 | X2Y2},<X_marker_state>,<Y_marker_state>

Example This example returns the current state of the X2 and Y2 markers to the string
variable Marker_state$, then prints the contents of the variable to the com-
puter screen.

10 DIM Marker_state$[50]
20 Output 707;":MARKer:STATe? X2Y2"
30 ENTER 707;Marker_state$
40 PRINT Marker_state$
50 END

X1Position

Command :MARKer:X1Position <X1_position>

This command sets the X1 marker position, and moves the X1 marker to the
specified time with respect to the trigger time, if the X1 marker is on.

<X1_position> Time at X1 marker in seconds.

Example This example sets the X1 marker to 90 ns.

10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:X1Position?

The query returns the time at the X1 marker position.

Returned Format [:MARKer:X1Position] <X1_position><NL>

Example This example returns the current setting of the X1 marker to the numeric vari-
able, Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Value
21-4

Marker Commands
Marker Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
40 PRINT Value
50 END

X1Y1source

Command :MARKer:X1Y1source {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

This command sets the source for the X1 and Y1 markers.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

The source you specify must be enabled for markers to be displayed. If the
channel, function, TDR response or waveform memory that you specify is not
on, an error message is issued and the query will return NONE.

Example This example selects channel 1 as the source for markers X1 and Y1.

10 OUTPUT 707;":MARKER:X1Y1SOURCE CHANNEL1"
20 END

Query :MARKer:X1Y1source?

The query returns the current source for markers X1 and Y1.

Returned Format [:MARKer:X1Y1source] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}<NL>

Example This example returns the current source selection for the X1 and Y1 markers
to the string variable, Selection$, then prints the contents of the variable to
the computer screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MARKER:X1Y1SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

X2Position

Command :MARKer:X2Position <X2_position>

This command sets the X2 marker position and moves the X2 marker to the
specified time with respect to the trigger time, if the X2 marker is on.

<X2_position> Time at X2 marker in seconds.

Example This example sets the X2 marker to 90 ns.

10 OUTPUT 707;":MARKER:X2POSITION 90E-9"
20 END

Query :MARKer:X2Position?

The query returns the time at the X2 marker in seconds.
21-5

Marker Commands
Marker Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Returned Format [:MARKer:X2Position] <X2_position><NL>

Example This example returns the current position of the X2 marker to the numeric
variable, Value, then prints the contents of the variable to the computer
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

X2Y2source

Command :MARKer:X2Y2source {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

This command sets the source for the X2 and Y2 markers.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

The source you specify must be enabled for markers to be displayed. If the
channel, function, TDR response or waveform memory that you specify is not
on, an error message is issued and the query will return NONE.

Example This example selects channel 1 as the source for markers X2 and Y2.

10 OUTPUT 707;":MARKER:X2Y2SOURCE CHANNEL1"
20 END

Query :MARKer:X2Y2source?

The query returns the current source for markers X2 and Y2.

Returned Format [:MARKer:X2Y2source] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}<NL>

Example This example returns the current source selection for the X2 and Y2 markers
to the string variable, Selection$, then prints the contents of the variable to
the computer screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MARKER:X2Y2SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

XDELta?

Query :MARKer:XDELta?

This query returns the time difference between X1 and X2 time markers if
they are both on. If both markers are not on, 9.999999E+37 will be returned.
21-6

Marker Commands
Marker Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
Xdelta = time at X2 – time at X1

Returned Format [:MARKer:XDELta] <time><NL>

<time> Time difference between X1 and X2 time markers in seconds.

Example This example returns the current time between the X1 and X2 time markers
to the numeric variable, Time, then prints the contents of the variable to the
computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:XDELTA?"
30 ENTER 707;Time
40 PRINT Time
50 END

XUNITs

Command :MARKer:XUNITs {SECond | METer}

This command sets the units for horizontal display in TDR and TDT applica-
tions. The units may be in seconds or meters relative to the reference plane.
The marker mode must be TDRTDT to use this feature.

Example The following example sets the horizontal display units to meters:

10 OUTPUT 707;":MARKER:XUNITS METER"
20 END

Query :MARKer:XUNITs?

The query returns the current marker units setting.

Returned Format [:MARKer:XUNITs]{SECond | METer}<NL>

Example The following example puts the current marker units setting into the variable
Units$, then displays the contents of that variable on the controller’s screen.

10 DIM Units$[20]
20 OUTPUT 707;":MARKER:XUNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

Y1Position

Command :MARKer:Y1Position <Y1_position>

This command sets the Y1 manual marker position and moves the Y1 manual
marker to the specified value on the specified source if the Y1 marker is in
manual state.
21-7

Marker Commands
Marker Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
<Y1_position> Current measurement unit value at Y1.

Example This example sets the Y1 marker to 10 mV.

10 OUTPUT 707;":MARKER:Y1POSITION 10E-3"
20 END

Query :MARKer:Y1Position?

The query returns the current measurement unit level at the Y1 marker posi-
tion.

Returned Format [:MARKer:Y1Position] <Y1_position><NL>

Example This example returns the current setting of the Y1 marker to the numeric vari-
able, Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

Y2Position

Command :MARKer:Y2Position <Y2_position>

This command sets the Y2 manual marker position and moves the Y2 manual
marker to the specified value on the specified source if the Y2 marker is in
manual state.

<Y2_position> Current measurement unit value at Y2.

Example This example sets the Y2 marker to –100 mV.

10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer:Y2Position?

The query returns the current measurement unit level at the Y2 marker posi-
tion.

Returned Format [:MARKer:Y2Position] <Y2_position><NL>

Example This example returns the current setting of the Y2 marker to the numeric vari-
able, Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END
21-8

Marker Commands
Marker Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
YDELta?

Query :MARKer:YDELta?

This query returns the current measurement unit difference between Y1 and
Y2 if they are both on and both have the same source. If not, 9.999999E+37 is
returned.

Vdelta = value at Y2 – value at Y1

Returned Format [:MARKer:YDELta] <value><NL>

<value> Measurement unit difference between Y1 and Y2.

Example This example returns the voltage difference between Y1 and Y2 to the numeric
variable, Volts, then prints the contents of the variable to the computer
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:YDELTA?"
30 ENTER 707;Volts
40 PRINT Volts
50 END

YUNITs

Command :MARKer:YUNITs {VOLT | OHM | REFLect}

This command sets the units for vertical display in TDR and TDT applications.
The units may be in volts, ohms, or % reflection. The marker mode must be
TDRTDT to use this feature.

Example The following example sets the vertical display units to ohms:

10 OUTPUT 707;":MARKER:YUNITS OHM"
20 END

Query :MARKer:YUNITs?

This query returns the current marker units setting.

Returned Format [:MARKer:YUNITs]{VOLT | OHM | REFLect}<NL>

Example The following example puts the current marker units setting into the variable
Units$, then displays the contents of that variable on the controller’s screen.

10 DIM Units$[20]
20 OUTPUT 707;":MARKER:YUNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END
21-9

Marker Commands
Marker Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
21-10

book.book Page 1 Friday, July 12, 2002 1:51 PM
22

ALIGn 22-4 SCALe:SOURce? 22-13
AMEThod 22-4 SCALe:X1 22-13
COUNt:FAILures? 22-5 SCALe:XDELta 22-14
COUNt:FSAMples? 22-5 SCALe:Y1 22-15
COUNt:HITS? 22-6 SCALe:Y2 22-15
COUNt:SAMPles? 22-6 SOURce 22-16
COUNt:WAVeforms? 22-7 SCALe:YTRack 22-17
DELete 22-7 SSCReen 22-17
EXIT 22-8 SSCReen:AREA 22-19
LOAD 22-8 SSCReen:IMAGe 22-19
MASK:DELete 22-9 SSUMmary 22-20
MMARgin:PERCent 22-9 STARt 22-21
MMARgin:STATe 22-10 SWAVeform 22-21
RUNTil 22-10 SWAVeform:RESet 22-22
SAVE 22-11 TEST 22-23
SCALe:DEFault 22-12 TITLe? 22-23
SCALe:MODE 22-12
Mask Test Commands

Mask Test Commands
Mask Test Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Mask Test Commands

The Mask Test commands and queries control the mask test features. Mask
testing automatically compares measurement results with the boundaries of
the mask you select. Any waveform or sample that falls within the boundaries
of the mask is recorded as a failure.

Compatibility with the Agilent 83480A/54750A

In commands with a REGion parameter, POLYgon may be used in place of REGion for
compatibility with the Agilent 83480A/54750A.
22-2

Mask Test Commands
Mask Handling

book.book Page 3 Friday, July 12, 2002 1:51 PM
Mask Handling

The instrument has three features that use a specific database. This database
uses a different memory area than the waveform record for each channel. The
three features that use the database are histograms, mask testing, and color
grade-gray scale display. When any one of these three features is turned on,
the instrument starts building the database. The database is the size of the
graticule area, which is 321 pixels high by 451 pixels wide. Behind each pixel
is a 16-bit counter. Each counter is incremented each time a pixel is hit by
data from a channel or function. The maximum count (saturation) for each
counter is 63,488. You can check to see if any of the counters is close to satu-
ration by using the :MEASure:CGRade:PEAK? query. The color-graded display
uses colors to represent the number of hits on various areas of the display.

The database continues to build until the instrument stops acquiring data or
all three functions (color grade-gray scale display, mask testing, and histo-
grams) are turned off. The instrument stops acquiring data when the power is
cycled, the Stop/Single hardkey is pressed, after a specified number of wave-
forms or samples are acquired, or as another module is plugged in.

You can clear the database by pressing the Clear Display hardkey, cycling the
power, turning off all three features that use the database, or sending a CDIS-
play command. The database does not differentiate waveforms from different
channels or functions. If three channels are turned on and the waveform for
each channel happens to light the same pixel at the same time, the counter is
incremented by three. However, you cannot tell how many hits came from
each waveform. For this reason, mask test is available in Eye/Mask mode only,
which allows only one channel to function at a time.

To avoid erroneous data, clear the display after you change instrument setup
conditions or device under test (DUT) conditions and acquire new data before
extracting measurement results.

Mask Files

The analyzer provides a series of standard masks defined according to telecom
and datacom standards. For a complete list of masks and templates, refer to
the online Help. You load a mask file using the DISK:LOAD or :MTESt:LOAD
commands. Mask files have the .msk or .pcm extensions.
22-3

Mask Test Commands
Mask Test Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
Mask Test Commands

ALIGn

Command :MTESt:ALIGn

This command automatically aligns and scales the mask to the current wave-
form.

Example The following example aligns the current mask to the current waveform.

10 OUTPUT 707;”:MTEST:ALIGN”
20 END

AMEThod

Command :MTESt:AMEThod {NRZeye | RZeye | ECMean | NONE}

This command sets the mask alignment method. This command should be
used in the setup section of a mask file when defining a custom mask. It will
ensure that the mask will be properly aligned if more alignment methods
become available in the future.

NRZeye Aligns the mask reference point to the first eye crossing on screen for non-
return to zero (NRZ) measurements.

RZeye Aligns the mask reference point to the first center location of the eye-closing
for return to zero (RZ) measurements.

ECMean Aligns the mask reference point to the eye crossing mean of the rise and fall
time at waveform average power at the first eye crossing point for NRZ eye
measurements. This is currently applicable to 10 GbEthernet masks.

NONE No alignment takes place.

Example The following example sets the mask alignment method to NRZ.

10 OUTPUT 707;”:MTEST:AMEThod NRZ”
20 END

Query :MTESt:AMEThod?

The query returns the align method, NRZ.

Returned Format [:MTESt:AMEThod] NRZ<NL>
22-4

Mask Test Commands
Mask Test Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
COUNt:FAILures?

Query :MTESt:COUNt:FAILures? REGion<N>

The query returns the number of failures that occurred within a particular
region. By defining regions within regions, then counting the failures for each
individual region, you can implement testing at different tolerance levels for a
given waveform.

The value 9.999E37 is returned if mask testing is not enabled or if you specify
a region number that is not used.

<N> An integer, 1 through 8, designating the region for which you want to deter-
mine the failure count.

Returned Format [:MTESt:COUNt:FAILures] <number_of_failures><NL>

<number_of_failures> The number of failures that have occurred for the designated region.

Example The following example determines the current failure count for region 3 and
prints it on the controller screen.

10 DIM MASK_FAILURES$[50]
20 OUTPUT 707;”:MTEST:COUNT:FAILURES? REGION3”
30 ENTER 707;MASK_FAILURES$
40 PRINT MASK_FAILURES$
50 END

COUNt:FSAMples?

Query :MTESt:COUNt:FSAMples?

The query returns the total number of failed samples in the current mask test
run. This count is for all regions and all waveforms, so if you wish to determine
failures by region number, use the COUNt:FAILures? query.

The count value returned is not the sum of the failure counts for each region.
For example, assume a region 2 enclosed completely by region 1. If region 1
has 100 failures, the value returned is 100, regardless of how many failures are
in region 2. Because region 2 is completely enclosed, the failure count for
region 2 must be less than or equal to 100 in this instance.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:FSAMples] <number_of_failed_samples><NL>

<number_of_failed
_samples>

The total number of failed samples for the current test run.
22-5

Mask Test Commands
Mask Test Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Example The following example determines the number of failed samples and prints
the result on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:FSAMPLES?”
30 ENTER 707;MASK_FSAMPLES
40 PRINT MASK_FSAMPLES
50 END

COUNt:HITS?

Query :MTESt:COUNt:HITS? {TOTal | MARGin | MASK}

This query returns the number of failed data points (or hits) that occurred
when using margin mask testing.

TOTal Returns the total number of failed data points. For positive margins, this is the
sum of the MASK and MARGin counts. For negative margins, this is the same
as the MASK count.

MARGin Returns the number of data points that occurred between the margin mask
and the standard mask. This is the margin area. This definition is true for both
positive and negative margins.

To determine a negative margin, increase the magnitude of the negative mar-
gin until the number of margin hits goes to zero. All data acquired since mask
margin testing was enabled will be compared to the margin. Sampled points
acquired before the margin was activated, that fall into the margin region, will
also show up as mask hits.

MASK Returns the number of data points that failed the standard mask.

Returned Format [:MTESt:COUNt:HITS] <number_of_hits><NL>

Example The following example determines the number of failed data points that
occurred within the mask margin.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:HITS? MARGin”
30 ENTER 707;Margin_hits
40 PRINT Margin_hits
50 END

COUNt:SAMPles?

Query :MTESt:COUNt:SAMPles?
22-6

Mask Test Commands
Mask Test Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
The query returns the total number of samples captured in the current mask
test run.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:SAMPles] <number_of_samples><NL>
<number_of _samples> The total number of samples for the current test run.

Example The following example determines the number of samples gathered in the cur-
rent test run and prints the result on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:SAMPLES?”
30 ENTER 707;Mask_samples
40 PRINT Mask_samples
50 END

COUNt:WAVeforms?

Query :MTESt:COUNt:WAVeforms?

The query returns the total number of waveforms gathered in the current
mask test run.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:WAVeforms] <number_of_waveforms><NL>

<number_of_
waveforms>

The total number of waveforms for the current test run.

Example The following example determines the number of waveforms gathered in the
current test run and prints the result on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:WAVEFORMS?”
30 ENTER 707;Mask_waveforms
40 PRINT Mask_waveforms
50 END

DELete

Command :MTESt:DELete

This command clears the currently loaded mask. MTESt:DELete is the pre-
ferred command. (See also MTESt:MASK:DELete.)

Example The following example deletes the currently defined mask.

10 OUTPUT 707;”:MTEST:DELETE”
20 END
22-7

Mask Test Commands
Mask Test Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
EXIT

Command :MTESt:EXIT

This command terminates mask testing.

Example The following example terminates mask testing.

10 OUTPUT 707;”:MTEST:EXIT”
20 END

LOAD

Command :MTESt:LOAD "<file_name>"

This command loads the specified mask file.

<file_name> The filename, with the extension .msk or .pcm.

You can specify the entire path, or use a relative path such as “.” or “..”

If you use a relative path, the present working directory is assumed. Use
DISK:CDIRectory to change the present working directory, and DISK:PWD? to
query it.

If no path is specified, a search path is followed. The directory
C:\scope\masks is searched first, then C:\User Files\masks.

If no filename extension is specified, an attempt will be made to open a file
having the specified filename with a ‘.msk’ extension appended. If unsuccess-
ful, an attempt will be made to open a file having the specified filename with a
‘.pcm’ extension appended.

Example This example loads the mask file FILE1.msk.

10 OUTPUT 707;":MTESt:LOAD ""FILE1.MSK"

Compatibility with the Agilent 83480A/54750A

The :MTESt:TEST OFF command performs the same function as :MTESt:EXIT and is pro-
vided for compatibility with the Agilent 83480A/54750A. For new programs, use the
:MTESt:EXIT command.

This command operates only on files and directories on “A:\”, “C:\User Files”,
“C:\scope\masks” and any mapped network drive.
22-8

Mask Test Commands
Mask Test Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
20 END

MASK:DELete

Command :MTESt:MASK:DELete

This command deletes the complete currently defined mask.

Example The following example deletes the currently defined mask.

10 OUTPUT 707;”:MTEST:MASK:DELETE”
20 END

MMARgin:PERCent

Command :MTESt:MMARgin:PERCent <margin_percent>

This command sets the amount of mask margin to apply to the selected mask.

<margin_percent> An integer, –100 to 100, expressing the mask margin in percent.

Example The following example sets the mask margin to 50 percent.

10 OUTPUT 707;”:MTEST:MMARGIN:PERCENT 50”
20 END

Query :MTESt:MMARgin:PERCent?

The query returns the current mask margin.

Returned Format [:MTESt:MMARgin:PERCent] <margin_percent><NL>

Example The following example determines the mask margin and prints the result on
the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:MMARgin:PERCent?”
30 ENTER 707;Margin
40 PRINT Margin
50 END

Compatibility with the Agilent 83480A/54750A

The :MTESt:MASK:DELete command performs the same function as :MTESt:DELete. The
:MTESt:MASK:DELete command is provided for compatibility with the Agilent 83480A/
54750A. For new programs, use the :MTESt:DELete form.
22-9

Mask Test Commands
Mask Test Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
MMARgin:STATe

Command :MTESt:MMARgin:STATe {ON | 1 | OFF | 0}

This command controls the activation of the mask margin.

Example The following example activates the mask margin.

10 OUTPUT 707;”:MTEST:MMARgin:STATe ON”
20 END

Query :MTESt:MMARgin:STATe?

The query returns the current mask margin state.

Returned Format [:MTESt:MMARgin:STATe] {1 | 0}<NL>

Example The following example determines the mask margin state and prints the result
on the controller screen.

10 DIM Margin_state$[50]
20 OUTPUT 707;”:MTEST:MMARgin:STATe?”
30 ENTER 707;Margin_state$
40 PRINT Margin_state$
50 END

RUNTil

Command :MTESt:RUNTil {OFF | FSAMples, <number_of_failed_samples>}

This command selects the acquisition run until mode. The acquisition may be
set to run until n fsamples have been acquired or to run forever (OFF). If
more than one limit test criteria is set, then the instrument will act upon the
completion of whichever limit test criteria is achieved first.

Compatibility with the Agilent 83480A/54750A

The :MTESt:RUMode command serves the same function and has been retained for
compatibility with the Agilent 83480A/54750A. All new programs should use the
:RUNTil command.

Acquiring a Specific Number of Waveforms or Samples

To run the acquisition for a specific number of waveforms or samples, refer to
ACQuire:RUNTil command on page 11-5.
22-10

Mask Test Commands
Mask Test Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
<number_of_failed_
samples>

An integer from 1 to 1,000,000,000.

Example The following example specifies that the acquisition runs until 50 samples
have been obtained.

10 OUTPUT 707;”:MTESt:STARt”
20 OUTPUT 707;”:MTESt:RUNTIL FSAMples,50”
30 END

Query :MTESt:RUNTil?

The query returns the currently selected run until state.

Returned Format [:MTESt:RUNTil] {OFF | FSAMPles, <n fsamples>}<NL>

Example The following example returns the result of the run until query and prints it to
the controller’s screen.

10 DIM Runt$[50]
20 OUTPUT 707;”:MTESt:RUNTIL?”
30 ENTER 707;Runt$
40 PRINT Runt$
50 END

SAVE

Command :MTESt:SAVE "<file_name>"

This command saves user-defined (custom) masks in either the .msk or the
.pcm format.

<file-name> The filename, with the extension .msk or .pcm. If no file suffix is specified,
.pcm is appended.

You can specify the entire path, or use a relative path such as “.” or “..” Valid
destinations are any mapped network drive, the floppy drive (A:) and
C:\User Files and its subdirectories.

If no path is specified, the file is saved in the directory C:\User Files\masks.

If you use a relative path, the present working directory is assumed. Use
DISK:CDIRectory to change the present working directory, and DISK:PWD? to
query it.

Run Until n Fsamples

A mask test must be running (:MTESt:TEST ON or :MTESt:STARt) before setting acquisi-
tion to run until n fsamples.
22-11

Mask Test Commands
Mask Test Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
SCALe:DEFault

Command :MTESt:SCALe:DEFault

This command sets the scaling markers to default values. The X1, Y1, and Y2
markers are set to values corresponding to graticule positions that are two
divisions in from the left, top, and bottom of the graticule, respectively. Y1 and
Y2 are not set for fixed voltage masks. These values are defined in the setup
section of the mask file.

Example The following example selects the default scale.

10 OUTPUT 707;”:MTEST:SCALE:DEFAULT”
20 END

SCALe:MODE

Command :MTESt:SCALe:MODE {XANDY| XONLy}

This command sets the mask scaling mode. This command should be used in
the setup section of a mask file when defining a custom mask. It ensures the
mask will be properly loaded and adjusted on the screen. Scale mode needs to
be specified for fixed voltage masks. All other masks are loaded as XANDY
mode.

XANDY Specifies that when a mask is loaded and aligned, the time value reference
point (X) and vertical scaling points (Y) are adjusted. This parameter applies
to all non-fixed voltage masks.

XONLy Specifies that when a mask is loaded and aligned, only the time value refer-
ence point (X) is adjusted. The vertical scaling points (Y) remain fixed. This
parameter applies to fixed voltage masks.

Example The following example sets the mask scale mode to fixed voltage masks
(XONLy).

10 OUTPUT 707;" :MTEST:SCALe:MODE XONLy"
20 END

Query :MTESt:SCALe:MODE?

The query returns the scaling mode.

Returned Format [:MTESt:SCALe:MODE] {XANDY | XONL}<NL>

Example The following example gets the current scale mode setting from the instru-
ment and prints it on the controller screen.

10 DIM Scale_Mode$[50]
22-12

Mask Test Commands
Mask Test Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
20 OUTPUT 707;" :MTEST:SCALE:MODE?"
30 ENTER 707;Scale_Mode$
40 PRINT Scale_Mode$
50 END

SCALe:SOURce?

Query :MTESt:SCALe:SOURce?

The query returns the name of the source currently used to interpret the Y1
and Y2 scale factors.

Returned Format [:MTESt:SCALe:SOURce] FUNCtion<N> | CHANnel<N> | CGMemory} <NL>

Example The following example gets the current scale source setting from the instru-
ment and prints it on the controller screen.

10 DIM Scale_Source$[30]
20 OUTPUT 707;”:MTEST:SCALE:SOURCE?”
30 ENTER 707;Scale_source$
40 PRINT Scale_source$
50 END

SCALe:X1

Command :MTESt:SCALe:X1 <x1_value>

This command defines where X=0 in the base coordinate system used for
mask testing. The other X coordinate is defined by the SCALe:XDELta com-
mand. Once the X1 and XDELta coordinates are set, all X values of vertices in
region masks are defined with respect to this value, according to the equation:

X = (X × XDELta) + X1

Thus, if you set X1 to 100 µs, and XDELta to 100 µs, an X value of .100 in a
vertex is at 110 µs.

The instrument uses this equation to normalize vertex values. This simplifies
reprogramming to handle different data rates. For example, if you halve the
period of the waveform of interest, you need only to adjust the XDELta value
to set up the mask for the new waveform.

<x1_value> A time value specifying the location of the X1 coordinate, which will then be
treated as X=0 for region vertex coordinates.

Example The following example sets the X1 coordinate at 150 µs.

10 OUTPUT 707;”:MTEST:SCALE:X1 150E-6”
20 END
22-13

Mask Test Commands
Mask Test Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
Query :MTESt:SCALe:X1?

The query returns the current X1 coordinate setting.

Returned Format [:MTESt:SCALe:X1] <x1_value> <NL>

Example The following example gets the current setting of the X1 coordinate from the
instrument and prints it on the controller screen.

10 DIM Scale_x1$[50]
20 OUTPUT 707;”:MTEST:SCALE:X1?”
30 ENTER 707;Scale_x1$
40 PRINT Scale_x1$
50 END

SCALe:XDELta

Command :MTESt:SCALe:XDELta <xdelta_value>

This command defines the position of the X2 marker with respect to the X1
marker. In the mask test coordinate system, the X1 marker defines where
X=0; thus, the X2 marker defines where X=1.

Because all X vertices of regions defined for mask testing are normalized with
respect to X1 and ∆X, redefining ∆X also moves those vertices to stay in the
same locations with respect to X1 and ∆X. Thus, in many applications, it is
best if you define XDELta as a pulse width or bit period. Then a change in data
rate, without corresponding changes in the waveform, can easily be handled
by changing ∆X.

The X-coordinate of region vertices are normalized using the equation:

X = (X × XDELta) + X1

<xdelta_value> A time value specifying the distance of the X2 marker with respect to the
X1 marker.

Example Assume that the period of the waveform you wish to test is 1 µs. Then the fol-
lowing example will set ∆X to 1 µs, ensuring that the waveform’s period is
between the X1 and X2 markers.

10 OUTPUT 707;”:MTEST:SCALE:XDELTA 1E-6”
20 END

Query :MTESt:SCALe:XDELta?

The query returns the current value of ∆X.

Returned Format [:MTESt:SCALe:XDELta] <xdelta_value> <NL>

Example The following example gets the value of ∆X from the instrument and prints it
on the controller screen.
22-14

Mask Test Commands
Mask Test Commands

book.book Page 15 Friday, July 12, 2002 1:51 PM
10 DIM Scale_xdelta$[50]
20 OUTPUT 707;”:MTEST:SCALE:XDELTA?”
30 ENTER 707;Scale_xdelta$
40 PRINT Scale_xdelta$
50 END

SCALe:Y1

Command :MTESt:SCALe:Y1 <y1_value>

This command defines where Y=0 in the coordinate system for mask testing.
All Y values of vertices in the coordinate system are defined with respect to
the boundaries set by SCALe:Y1 and SCALe:Y2, according to the equation:

Y = (Y × (Y2 – Y1)) + Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of .100 in a vertex is at
190 mV.

<y1_value> A voltage value specifying the point at which Y=0.

Example The following example sets the Y1 marker to –150 mV.

10 OUTPUT 707;”:MTEST:SCALE:Y1 -150E-3”
20 END

Query :MTESt:SCALe:Y1?

The query returns the current setting of the Y1 marker.

Returned Format [:MTESt:SCALe:Y1] <y1_value><NL>

Example The following example gets the setting of the Y1 marker from the instrument
and prints it on the controller screen.

10 DIM Scale_y1$[50]
20 OUTPUT 707;”:MTEST:SCALE:Y1?”
30 ENTER 707;Scale_y1$
40 PRINT Scale_y1$
50 END

SCALe:Y2

Command :MTESt:SCALe:Y2 <y2_value>

This command defines Y=1 in the coordinate system for mask testing. All
Y values of vertices in the coordinate system are defined with respect to the
boundaries defined by SCALe:Y1 and SCALe:Y2, according to the following
equation:

Y = (Y × (Y2 – Y1)) + Y1
22-15

Mask Test Commands
Mask Test Commands

book.book Page 16 Friday, July 12, 2002 1:51 PM
Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of .100 in a vertex is at
190 mV.

<y2_value> A voltage value specifying the location of the Y2 marker.

Example The following example sets the Y2 marker to 2.5 V.

10 OUTPUT 707;”:MTEST:SCALE:Y2 2.5”
20 END

Query :MTESt:SCALe:Y2?

The query returns the current setting of the Y2 marker.

Returned Format [:MTESt:SCALe:Y2] <y2_value> <NL>

Example The following example gets the setting of the Y2 marker from the instrument
and prints it on the controller screen.

10 DIM Scale_y2$[50]
20 OUTPUT 707;”:MTEST:SCALE:Y2?”
30 ENTER 707;Scale_y2$
40 PRINT Scale_y2$
50 END

SOURce

Command :MTESt:SOURce {CHANnel<N> | FUNCtion<N> | CGMemory}

This command sets the database source for mask tests. The default is the low-
est numbered database signal displayed.

<N> An integer, 1 through 4.

Example The following example sets the mask test source to channel 1.

10 OUTPUT 707;”:MTEST:SOURCE CHANNEL1”
20 END

Query :MTESt:SOURce?

This query returns the current database source for the mask test.

Returned Format [:MTESt:SOURce] {CHANnel<N> | FUNCtion<N> | CGMemory}<NL>

Example The following example gets the current mask test source and puts the source
value in the setting.

10 DIM Source$[50]
20 OUTPUT 707;”:MTESt:SOURce?”
30 ENTER 707;Source$
40 PRINT Source$
50 END
22-16

Mask Test Commands
Mask Test Commands

book.book Page 17 Friday, July 12, 2002 1:51 PM
SCALe:YTRack

Command :MTESt:SCALe:YTRack {{ON | 1} {OFF | 0}}

This command enables or disables tracking between the Y1 and Y2 levels.

Example The following program enables tracking between Y1 and Y2.

10 OUTPUT 707;":MTEST:SCALE:YTRACK:ON"
20 END

Query :MTESt:SCALe:YTRack?

The query returns the current state of the tracking.

Returned Format [:MTESt:SCALe:YTRack] {1 | 0}<NL>

Example The following example determines the state of Y tracking and prints the
results on the controller screen.

10 DIM Ytrack_state$[50]
20 OUTPUT 707;”:MTESt:SCALe:YTRack?”
30 ENTER 707;Ytrack_state$
40 PRINT Ytrack_state$
50 END

SSCReen

Command :MTESt:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen in the event of a failure.

OFF Turns off the save action.

DISK Saves a copy of the screen to disk in the event of a failure.

<filename> An ASCII string enclosed in quotations marks. If no filename is specified, a
filename will be assigned. The default filename is MaskLimitScreenX.bmp,
where X is an incremental number assigned by the instrument.
22-17

Mask Test Commands
Mask Test Commands

book.book Page 18 Friday, July 12, 2002 1:51 PM
The filename field encodes the network path and the directory in which the
file will be saved, as well as the file format that will be used. The following is a
list of valid filenames.

If a filename is specified without a path, the default path will be
C:\User Files\screen images

The default file type is a bitmap (.bmp). The following graphics formats are
available by specifying a file extension: PCX files (.pcx), EPS files (.eps), Post-
script files (.ps), JPEG (.jpg), TIFF (.tif), and GIF files (.gif).

Example The following example saves a copy of the screen to the disk in the event of a
failure. Additional disk-related controls are set using the SSCReen:AREA and
SSCReen:IMAGe commands.

10 OUTPUT 707;”:MTESt:SSCREEN DISK”
20 END

Query :MTESt:SSCReen?

Save Screen Options Stored in Memory

The save screen options established by the commands MTESt:SSCReen DISK,
MTESt:SSCReen:AREA, and MTESt:SSCReen:IMAG are stored in the instrument’s mem-
ory and will be employed in consecutive save screen operations, until changed by the
user. This includes the <filename> parameter for the MTESt:SSCReen DISK command. If
the results of consecutive limit tests must be stored in different files, omit the <file-
name> parameter and use the default filename instead. Each screen image will be saved
in a different file named MaskLimitScreenX.bmp, where X is an incremental number
assigned by the instrument.

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” C:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.
22-18

Mask Test Commands
Mask Test Commands

book.book Page 19 Friday, July 12, 2002 1:51 PM
The query returns the current state of the SSCReen command.

Returned Format [:MTESt:SSCReen] {OFF | DISK [,<filename>]}<NL>

Example The following example returns the destination of the save screen when a fail-
ure occurs and prints the result to the controller’s screen.

10 DIM SSCR$[50]
20 OUTPUT 707;”:MTESt:SSCREEN?”
30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA

Command :MTESt:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when
the run until condition is met. When you select GRATicule, only the graticule
area of the screen is saved (this is the same as choosing Waveforms Only in
the Specify Report Action for mask limit test dialog box). When you select
SCReen, the entire screen is saved.

Example This example selects the graticule for saving.

10 OUTPUT 707;":MTEST:SSCREEN:AREA GRATICULE"
20 END

Query :MTESt:SSCReen:AREA?

The query returns the current setting for the area of the screen to be saved.

Returned Format [:MTESt:SSCReen:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be saved in the string
variable, Selection$, then prints the contents of the variable to the computer's
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MTEST:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe

Command :MTESt:SSCReen:IMAGe {NORMal | INVert | MONochrome}
22-19

Mask Test Commands
Mask Test Commands

book.book Page 20 Friday, July 12, 2002 1:51 PM
This command saves the screen image to disk normally, inverted, or in mono-
chrome. IMAGe INVert is the same as choosing Invert Waveform Background
Color in the Specify Report Action for acquisition limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":MTEST:SSCREEN:IMAGE NORMAL"
20 END

Query :MTESt:SSCReen:IMAGe?

The query returns the current image setting.

Returned Format [:MTESt:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>

Example This example places the current setting for the image in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":MTEST:SSCREEN:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSUMmary

Command :MTESt:SSUMmary {OFF | DISK [,<filename>]}

This command saves the summary in the event of a failure.

When set to disk, the summary is written to the disk drive. The summary is a
logging method where the user can get an overall view of the test results. The
summary is an ASCII file that the user can read on the computer or place into
a spreadsheet.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the
default filename will be MaskLimitSummaryX.sum, where X is an incremen-
tal number assigned by the instrument. If a filename is specified without a
path, the default path will be C:\User Files\limit summaries.

Example The following example saves the summary to a disk file named TEST.sum.

Storing Summaries of Limit Tests in Individual Files

If the summary of consecutive limit tests is to be stored in individual files, omit the <file-
name> parameter. Limit test summaries will be stored in files named
MaskLimitSummaryX.sum, where X is an incremental number assigned by the instru-
ment.
22-20

Mask Test Commands
Mask Test Commands

book.book Page 21 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;”:MTEST:SSUMMARY DISK,TEST”
20 END

Query :MTESt:SSUMmary?

The query returns the current specified destination for the summary.

Returned Format [:MTESt:SSUMmary] {OFF | DISK {,<filename>}}<NL>

Example The following example returns the current destination for the summary and
prints the results to the controller’s screen.

10 DIM SUMM$[50]
20 OUTPUT 707;”:MTEST:SSUMMARY?”
30 ENTER 707;SUMM$
40 PRINT SUMM$
50 END

STARt

Command :MTESt:STARt

This command aligns the currently loaded mask to the current waveform, and
starts testing. If no mask is currently loaded, a warning message will be dis-
played, but no error will be generated.

SWAVeform

Command :MTESt:SWAVeform <source>, <destination>[,<filename>[, <format>]]

This command saves waveforms from a channel, function, or waveform mem-
ory in the event of a failure detected by the limit test. Each waveform source
can be individually specified, allowing multiple channels,or functions to be
saved to disk or waveform memories. Setting a particular source to OFF
removes any waveform save action from that source.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<destination> {OFF | WMEMory<N>| DISK}

Compatibility with the Agilent 83480A/54750A

The :MTESt:TEST ON command serves the same function and has been retained for
compatibility with the Agilent 83480A/54750A. All new programs should use the :STARt
command.
22-21

Mask Test Commands
Mask Test Commands

book.book Page 22 Friday, July 12, 2002 1:51 PM
<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the
assigned filename will be MaskLimitChN_X, MaskLimitFnN_X,
MaskLimitRspN_X, or MaskLimitMemN_X, where X is an incremental num-
ber assigned by the instrument. If no path is specified, the default path will be
C:\User Files\waveforms.

<format> {TEXT [,YVALues | VERBose] | INTernal}

where INTernal is the default value, and VERBose is the default value for
TEXT.

Example The following example turns off the saving of waveforms from channel 1 in the
event of a limit test failure.

10 OUTPUT 707;”:MTEST:SWAVEFORM CHAN1,OFF”
20 END

Query :MTESt:SWAVeform? <source>

The query returns the current state of the :MTESt:SWAVeform command.

Returned Format [:MTESt:SWAVeform] <source>, <destination>, [<filename>[,<format>]]<NL>

Example The following example returns the current parameters for saving waveforms
in the event of a limit test failure.

10 DIM SWAV$[50]
20 OUTPUT 707;”:MTEST:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet

Command :MTESt:SWAVeform:RESet

This command sets the save destination for all waveforms to OFF. Setting a
source to OFF removes any waveform save action from that source. This is a
convenient way to turn off all saved waveforms if it is unknown which are
being saved.

Example 10 OUTPUT 707;”:MTEST:SWAVeform:RESet”

Storing Waveforms of Limit Tests in Individual Files

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.
22-22

Mask Test Commands
Mask Test Commands

book.book Page 23 Friday, July 12, 2002 1:51 PM
20 END

TEST

Command :MTESt:TEST {ON | 1 | OFF | 0}

This command controls the execution of the Mask Test function. ON behaves
as the :MTESt:STARt command on page 22-21. OFF behaves as the
:MTEST:EXIT command on page 22-8.

Mode Mask limit test only.

Example The following example determines whether the mask test subsystem is on or
off and prints the result on the controller screen.

10 DIM Mtest_state$[30]
20 OUTPUT 707;”:MTEST:TEST?”
30 ENTER 707;Mtest_state$
40 PRINT Mtest_state$
50 END

Query :MTESt:TEST?

The query returns the state of the mask test subsystem, whether on or off.

Returned Format [:MTESt:TEST] {1 | 0}<NL>

TITLe?

Query :MTESt:TITLe?

This query returns the string of the currently loaded mask. If no mask is
loaded, a null string is returned.

Returned Format [:MTESt:TITLe] <“title”>

Compatibility with the Agilent 83480A/54750A

This command has been retained for compatibility with the Agilent 83480A/54750A. All
new programs should avoid using this command.
22-23

Mask Test Commands
Mask Test Commands

book.book Page 24 Friday, July 12, 2002 1:51 PM
22-24

book.book Page 1 Friday, July 12, 2002 1:51 PM
23

ANNotation 23-6 HISTogram:M3S? 23-29
APOWer 23-6 HISTogram:MEAN? 23-30
CGRade:AMPLitude 23-7 HISTogram:MEDian? 23-30
CGRade:BITRate 23-8 HISTogram:PEAK? 23-31
CGRade:COMPlete 23-8 HISTogram:PP? 23-31
CGRade:CRATio 23-9 HISTogram:PPOSition? 23-32
CGRade:CROSsing 23-10 HISTogram:SCALe? 23-33
CGRade:DCDistortion 23-11 HISTogram:STDDev? 23-33
CGRade:DCYCle 23-12 NWIDth 23-34
CGRade:EHEight 23-12 OVERshoot 23-35
CGRade:ERATio 23-13 PERiod 23-36
CGRade:ESN 23-14 PWIDth 23-36
CGRade:EWIDth 23-15 RESults? 23-37
CGRade:JITTer 23-15 RISetime 23-40
CGRade:OFACtor 23-16 SCRatch 23-41
CGRade:OLEVel 23-17 SENDvalid 23-41
CGRade:PEAK? 23-18 SOURce 23-42
CGRade:PWIDth 23-18 TEDGe? 23-43
CGRade:SOURce 23-19 TMAX 23-44
CGRade:ZLEVel 23-20 TMIN 23-45
CLEar 23-20 TVOLt? 23-45
DEFine 23-21 VAMPlitude 23-46
DEFine CGRade 23-23 VAVerage 23-47
DELTatime 23-24 VBASe 23-48
DUTYcycle 23-25 VMAX 23-49
FALLtime 23-26 VMIN 23-50
FREQuency 23-26 VPP 23-51
HISTogram:HITS? 23-27 VRMS 23-51
HISTogram:M1S? 23-28 VTIMe? 23-52
HISTogram:M2S? 23-29 VTOP 23-53
Measure Commands

Measure Commands
Measure Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Measure Commands

The commands in the MEASure subsystem are used to make parametric mea-
surements on displayed waveforms.

The Agilent 86100A has three modes: Eye, TDR, and Oscilloscope. Each mode
has a set of measurements. In Eye mode, all of the measurements are made on
the color grade/gray scale data, with the exception of average optical power
and histogram measurements.
23-2

Measure Commands
Measurement Setup

book.book Page 3 Friday, July 12, 2002 1:51 PM
Measurement Setup

To make a measurement, the portion of the waveform required for that mea-
surement must be displayed on the analyzer.

• For a period or frequency measurement, at least one and one half complete cy-
cles must be displayed.

• For a pulse width measurement, the entire pulse must be displayed.

• For a rise time measurement, the leading (positive-going) edge of the wave-
form must be displayed.

• For a fall time measurement, the trailing (negative-going) edge of the wave-
form must be displayed.

• A valid source for the measurement must be designated. This can be done glo-
bally with the MEASure:SOURce command or locally with the optical source
parameter in each measurement.

User-Defined Measurements

When user-defined measurements are made, the defined parameters must be
set before actually sending the measurement command or query.

Measurement Error

If a measurement cannot be made because of the lack of data, because the
source signal is not displayed, the requested measurement is not possible (for
example, a period measurement on an FFT waveform), or for some other rea-
son, the following results are returned:

• 9.99999E+37 is returned as the measurement result.

• If SENDvalid is ON, the error code is also returned.
23-3

Measure Commands
Making Measurements

book.book Page 4 Friday, July 12, 2002 1:51 PM
Making Measurements

If more than one period, edge, or pulse is displayed, time measurements are
made on the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the analyzer first
determines the top (100%) and base (0%) voltages of the waveform. From
this information, the analyzer determines the other important voltage values
(10%, 90%, and 50% voltage values) for making measurements.

The 10% and 90% voltage values are used in the rise-time and fall-time mea-
surements when standard measurements are selected. The 50% voltage value
is used for measuring frequency, period, pulse width, and duty cycle with stan-
dard measurements selected.

You can also make measurements using user-defined parameters, instead of
the standard measurement values.

When the command form of a measurement is used, the analyzer is placed in
the continuous measurement mode. The measurement result will be displayed
on the front panel. There may be a maximum of four measurements running
continuously. Use the SCRatch command to turn off the measurements.

When the query form of the measurement is used, the measurement is made
one time, and the measurement result is returned.

• If the current acquisition is complete, the current acquisition is measured and
the result is returned.

• If the current acquisition is incomplete and the analyzer is running, acquisitions
will continue to occur until the acquisition is complete. The acquisition will
then be measured and the result returned.

• If the current acquisition is incomplete and the analyzer is stopped, the mea-
surement result will be 9.99999E+37 and the incomplete result state will be re-
turned if SENDvalid is ON.

All measurements are made using the entire display, except for VRMS which
allows measurements on a single cycle, and eye measurements in the defined
eye window. Therefore, if you want to make measurements on a particular
cycle, display only that cycle on the screen.

Measurements are made on the displayed waveforms specified by the SOURce
command. The SOURce command allows two sources to be specified. Most
measurements are only made on a single source. Some measurements, such as
the DELTatime measurement, require two sources.
23-4

Measure Commands
Making Measurements

book.book Page 5 Friday, July 12, 2002 1:51 PM
The measurement source for remote measurements can not be set from the
front panel. The measurement source is not reset by power cycles or default
setup.

If the signal is clipped, the measurement result may be questionable. In this
case, the value returned is the most accurate value that can be made using the
current scaling. You might be able to obtain a more accurate measurement by
adjusting the vertical scale to prevent the signal from being clipped. The mea-
surement result 9.99999E+37 may be returned in some cases of clipped sig-
nals.
23-5

Measure Commands
Measure Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
Measure Commands

ANNotation

Command :MEASure:ANNotation {ON | 1 | OFF | 0}

This command turns measurement annotations on or off. If there are no active
measurements, you can still turn on or off measurement annotations. The
instrument will remain in the defined state and will be activated (if on) the
next time measurements are performed.

Mode All instrument modes.

Example The following example turns on measurement annotations.

10 OUTPUT 707;”:MEASURE:ANNOTATION ON”
20 END

Query :MEASure:ANNotation?

The query returns the current measurement annotation state.

Returned Format [:MEASure:ANNotation] {1 | 0}

APOWer

Command :MEASure:APOWer <units> [,<source>]

This command measures the average power. Sources are specified with the
MEASure:SOURce command or with the optional parameter following the
APOWer command. The average optical power can only be measured on an
optical channel input.

Mode Eye or Oscilloscope modes

<units> {WATT | DECibel}

<source> {CHANnel<N>}

<N> For channels, this value is dependent on the type of module and its location in
the instrument. It will work only on optical channels.

Example The following example measures the average power of the last specified sig-
nal.

10 OUTPUT 707;”:MEASURE:APOWER WATT”
20 END
23-6

Measure Commands
Measure Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
Query :MEASure:APOWer? <units> [,<source>]

The query returns the measured power of the specified source.

Returned Format [:MEASure:APOWer] <value>[,<result_state>]<NL>

<value> The average power.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current power of the specified signal in the
numeric variable, Value, then prints the contents of the variable to the control-
ler screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:APOWER? WATT”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:AMPLitude

Command :MEASure:CGRade:AMPLitude [<source>]

This command measures the eye amplitude of the displayed source. The eye
amplitude is the difference between the one level and the zero level.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the eye amplitude of the displayed signal.

10 OUTPUT 707;”:MEASURE:CGRADE:AMPLITUDE”
20 END

Query :MEASure:CGRade:AMPLitude? [<source>]

The query returns the eye amplitude of the eye signal of the displayed source.

Returned Format [:MEASure:CGRade:AMPLitude] <value>[,<result_state>]<NL>

<value> The eye amplitude.

<result state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example queries the analyzer for the eye amplitude of the displayed sig-
nal, places the result in the numeric variable, EyeAmp, and then prints the
contents of the variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:AMPLITUDE?”
30 ENTER 707;EyeAmp
40 PRINT EyeAmp
23-7

Measure Commands
Measure Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
50 END

CGRade:BITRate

Command :MEASure:CGRade:BITRate [<source>]

This command measures the bit rate of the displayed signal. The bit rate is the
number of bits per second. It is measured as the inverse of the bit period. In
NRZ eye mode, the bit period is the time interval between two successive
crossing points of an eye. In RZ eye mode, the bit period is the time interval
between the 50% falling (or rising) edges of 2 consecutive eyes.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the bit rate of the displayed eye.

10 OUTPUT 707;”:MEASURE:CGRADE:BITRATE”
20 END

Query :MEASure:CGRade:BITRate? [<source>]

The query returns the bit rate of the eye signal of the displayed source. Units
are in bits/s.

Returned Format [:MEASure:CGRade:BITRate] <value>[,<result_state>]<NL>

<value> The bit rate.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example queries the analyzer for the bit rate of the displayed signal,
places the result in the numeric variable, BitRate, and then prints the contents
of the variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:BITRATE?”
30 ENTER 707;BitRate
40 PRINT BitRate
50 END

CGRade:COMPlete

Command :MEASure:CGRade:COMPlete <comp_hits>

This command sets the color grade measurement completion criterion. The
data for color grade display is the same as for gray scale display.
23-8

Measure Commands
Measure Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
Mode Eye or Oscilloscope modes

<comp_hits> The number of hits that the peak-numbers-of-hits, in the color grade database,
must equal or exceed before a color grade measurement is executed.

Example The following example sets the completion criterion to 10 hits.

10 OUTPUT 707;”:MEASURE:CGRADE:COMPLETE 10”
20 END

Query :MEASure:CGRade:COMPlete?

The query returns the current setting for color grade completion.

Returned Format [:MEASure:CGRade:COMPlete] <comp_hits><NL>

A color grade measurement query will return 9.99999E+37 until the measure-
ment is complete.

Example The following example sets the color grade complete value, then starts a Vmax
measurement with the color grade database as the source.

10 OUTPUT 707;”:MEASURE:CGRADE:COMPLETE? 8”
20 OUTPUT 707;”:DEFINE:CGRADE ON”
30 OUTPUT 707;”:MEASURE:VMAX CGRADE”
40 END

CGRade:CRATio

Command :MEASure:CGRade:CRATio <format> [,<source>]

This command measures the contrast ratio of the RZ (Return-to-Zero) eye
diagram on the color graded display. The dark level or dc offset of the input
channel must have been previously calibrated. See “ERATio:STARt” on
page 12-6 to perform a dark level calibration. If the source is not set, the low-
est numbered signal that is on will be the source of the measurements.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine” on
page 23-21.

Auto Skew Uses CGRade:COMPlete

Auto skew (page 12-13) also uses the current color grade measurement completion cri-
terion. If auto skew fails to make the bit rate measurement or determine the time of the
crossing points needed to compute the skew, it may be necessary to increase the color
grade completion criterion. Increasing the value will increase the time for auto skew to
complete, allowing it to collect more data points before executing teh bit rate and cross-
ing time measurements.
23-9

Measure Commands
Measure Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
<format> {RATio | DECibel | PERCent}

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the contrast ratio.

10 OUTPUT 707;”:MEASURE:CGRADE:CRATIO PERCENT”
20 END

Query :MEASure:CGRade:CRATio? <format> [,<source>]

This query returns the contrast ratio of the color graded display.

Returned Format [:MEASure:CGRade:CRATio] <value>[,<result_state>]<NL>

<value> The contrast ratio.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current contrast ratio in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:CRATIO? PERCENT”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:CROSsing

Command :MEASure:CGRade:CROSsing [<source>]

This command measures the crossing level percent of the current eye diagram
on the color grade or gray scale display. The data for color grade display is the
same as for gray scale display. If the source is not set, the lowest numbered
signal that is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to NRZ. See “DEFine CGRade”
on page 23-23.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the crossing level.

10 OUTPUT 707;”:MEASURE:CGRade:CROSsing”
20 END

Query :MEASure:CGRade:CROSsing? [<source>]

The query returns the crossing level percent of the current eye diagram on the
color grade or gray scale display.

Returned Format [:MEASure:CGRade:CROSsing] <value>[,<result_state>]<NL>

<value> The crossing level.
23-10

Measure Commands
Measure Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current crossing level in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:CROSSING?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:DCDistortion

Command :MEASure:CGRade:DCDistortion <format>[,<source>]

This command measures the duty cycle distortion on the eye diagram of the
current color grade or gray scale display. The parameter specifies the format
for reporting the measurement. The data for color grade display is the same as
for gray scale display. If the source is not set, the lowest numbered signal that
is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to NRZ. See “DEFine CGRade”
on page 23-23.

<format> {TIME | PERCent}

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the duty cycle distortion.

10 OUTPUT 707;”:MEASURE:CGRADE:DCDistortion TIME”
20 END

Query :MEASure:CGRade:DCDistortion? <format> [,<source>]

The query returns the duty cycle distortion of the color grade or gray scale
display.

Returned Format [:MEASure:CGRade:DCDistortion] <value>[,<result_state>] <NL>

<value> The duty cycle distortion.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current duty cycle distortion in the numeric
variable, Value, then prints the contents of the variable to the controller
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:DCDISTORTION? PERCENT”
30 ENTER 707;Value
23-11

Measure Commands
Measure Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
40 PRINT Value
50 END

CGRade:DCYCle

Command :MEASure:CGRade:DCYCle [<source>]

This command measures the duty cycle of the RZ (Return-to-Zero) eye dia-
gram on the color graded display. If the source is not set, the lowest numbered
signal display that is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade”
on page 23-23.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the duty cycle of the color graded display.

10 OUTPUT 707;”:MEASURE:CGRADE:DCYCle”
20 END

Query :MEASure:CGRade:DCYCle? [<source>]

This query returns the duty cycle of the color graded display.

Returned Format [:MEASure:CGRade:DCYCle]<value>[,<result_state>]<NL>

<value> The duty cycle.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current duty cycle in the numeric variable,
Value, then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:DCYCle?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:EHEight

Command :MEASure:CGRade:EHEight <format> [,<source>]

This command measures the eye height on the eye diagram of the current
color grade display. The data for color grade display is the same as for gray
scale display. If the source is not set, the lowest numbered signal display that
is on will be the source of the measurement.

Mode Eye mode only.
23-12

Measure Commands
Measure Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
<format> {RATio | DECibel}

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the eye height.

10 OUTPUT 707;”:MEASURE:CGRADE:EHEight”
20 END

Query :MEASure:CGRade:EHEight? <format> [,<source>]

The query returns the eye height of the color grade display. RATio sets the eye
height in amplitude units. DECibel sets the eye height in DB units.

Returned Format [:MEASure:CGRade:EHEight] <value>[,<result_state>]<NL>

<value> The eye height.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current eye height in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:EHEIGHT?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:ERATio

Command :MEASure:CGRade:ERATio <format> [,<source>]

This command measures the extinction ratio on the eye diagram of the cur-
rent color grade display. The dark level or dc offset of the input channel must
have been previously calibrated. The data for color grade display is the same
as for gray scale display. If the source is not set, the lowest numbered signal
display that is on will be the source of the measurement.

Mode Eye mode only.

<format> {RATio | DECibel | PERCent}

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the extinction ratio.

10 OUTPUT 707;”:MEASURE:CGRADE:ERATIO RATIO”
20 END

Query :MEASure:CGRade:ERATio? <format> [,<source>]

The query returns the extinction ratio of the color grade display.

Returned Format [:MEASure:CGRade:ERATio] <value>[,<result_state>]<NL>
23-13

Measure Commands
Measure Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
<value> The extinction ratio.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current extinction ratio in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:ERATIO? RATIO”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:ESN

Command :MEASure:CGRade:ESN [<source>]

This command measures the eye signal-to-noise. The data for color grade dis-
play is the same as for gray scale display. If the source is not set, the lowest
numbered signal display that is on will be the source of the measurement.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the eye signal-to-noise.

10 OUTPUT 707;”:MEASURE:CGRADE:ESN”
20 END

Query :MEASure:CGRade:ESN? [<source>]

The query returns the eye signal-to-noise of the color grade display.

Returned Format [:MEASure:CGRade:ESN] <value>[,<result_state>]<NL>

<value> The eye signal-to-noise value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the eye signal-to-noise value in the numeric
variable, Value, then prints the contents of the variable to the controller
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:ESN?”

Note

This measurement was called Q-factor in the 83480A/54750A.
23-14

Measure Commands
Measure Commands

book.book Page 15 Friday, July 12, 2002 1:51 PM
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:EWIDth

Command :MEASure:CGRade:EWIDth <format> [,<source>]

This command measures the eye width on the eye diagram of the current
color grade display. The data for color grade display is the same as for gray
scale display. If the source is not set, the lowest numbered signal display that
is on will be the source of the measurement.

Mode Eye mode only.

<format> {RATio | TIME}

The default format is TIME.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the eye width.

10 OUTPUT 707;”:MEASURE:CGRADE:EWIDTH”
20 END

Query :MEASure:CGRade:EWIDth? <format> [,<source>]

The query returns the eye width of the color grade display.

Returned Format [:MEASure:CGRade:EWIDth] <value>[,<result_state>] <NL>

<value> The eye width.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current eye width in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:EWIDTH?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:JITTer

Command :MEASure:CGRade:JITTer <format> [,<source>]
23-15

Measure Commands
Measure Commands

book.book Page 16 Friday, July 12, 2002 1:51 PM
This command measures the jitter at the eye diagram crossing point. The
parameter specifies the format, peak-to-peak or RMS, in which the results are
reported. The data for color grade display is the same as for gray scale display.
If the source is not set, the lowest numbered signal display that is on will be
the source of the measurement.

Mode Eye or Oscilloscope modes. In either mode the source is color grade data.

<format> {PP | RMS}

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the jitter.

10 OUTPUT 707;”:MEASURE:CGRADE:JITTER RMS”
20 END

Query :MEASure:CGRade:JITTer? <format> [,<source>]

The query returns the jitter of the color grade display.

Returned Format [:MEASure:CGRade:JITTer] <value>[,<result_state>] <NL>

<value> The jitter.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current jitter in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:JITTER? RMS”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:OFACtor

Command :MEASure:CGRade:OFACtor [<source>]

This command measures the opening factor of the RZ (Return-to-Zero) eye
diagram on the color graded display. If the source is not set, the lowest num-
bered signal display that is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade”
on page 23-23.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the opening factor of the color graded dis-
play.

10 OUTPUT 707;”:MEASure:CGRade:OFACtor”
23-16

Measure Commands
Measure Commands

book.book Page 17 Friday, July 12, 2002 1:51 PM
20 END

Query :MEASure:CGRade:OFACtor? [<source>]

This query returns the opening factor of the color graded display.

Returned Format [:MEASure:CGRade:OFACtor] <value>[,<result_state>]<NL>

<value> The opening factor.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current opening factor in the numeric vari-
able, Value, then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:OFACtor?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:OLEVel

Command :MEASure:CGRade:OLEVel [<source>]

This command measures the logic one level inside the eye window. If the
source is not set, the lowest numbered signal display that is on will be the
source of the measurement.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the logic one level.

10 OUTPUT 707;”:MEASURE:CGRADE:OLEVEL”
20 END

Query :MEASure:CGRade:OLEVel? [<source>]

The query returns the logic one level of the color grade display.

Returned Format [:MEASure:CGRade:OLEVel] <value>[,<result_state>]<NL>

<value> The logic one level.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current logic one level in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:OLEVEL?”
30 ENTER 707;Value
23-17

Measure Commands
Measure Commands

book.book Page 18 Friday, July 12, 2002 1:51 PM
40 PRINT Value
50 END

CGRade:PEAK?

Query :MEASure:CGRade:PEAK? [<source>]

The query returns the maximum number of hits of the color grade display. The
data for color grade display is the same as for gray scale display. If the source
is not set, the lowest numbered signal display that is on will be the source of
the measurement.

Mode Eye or Oscilloscope modes.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Returned Format [:MEASure:CGRade:PEAK] <value>[,<result_state>]<NL>

<value> The number of hits.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current number of hits in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:PEAK?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:PWIDth

Command :MEASure:CGRade:PWIDth [<source>]

This command measures the pulse width of the eye diagram on the color
graded display. If the source is not set, the lowest numbered signal display
that is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade”
on page 23-23.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the pulse width of the color graded display.

10 OUTPUT 707;”:MEASure:CGRade:PWIDth”
20 END

Query :MEASure:CGRade:PWIDth? [<source>]
23-18

Measure Commands
Measure Commands

book.book Page 19 Friday, July 12, 2002 1:51 PM
This query returns the pulse width of the color graded display.

Returned Format [:MEASure:CGRade:PWIDth] <value>[,<result_state>]<NL>

<value> The pulse width.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current pulse width in the numeric variable,
Value, then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:PWIDth?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:SOURce

Command :MEASure:CGRade:SOURce <source>

This command sets the default source for color grade-gray scale measure-
ments. If this source is not set, the lowest numbered color grade-gray scale
signal that is on will be the source of the measurements. This command is sim-
ilar to the :MEASure:SOURce command, with the exception of specifying a
color grade-gray scale signal.

Mode Eye and Oscilloscope modes.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

<N> An integer, from 1 through 4.

Example This example selects channel 1 as the source for measurements.

10 OUTPUT 707;":MEASure:CGRade:SOURce CHANNEL1"
20 END

Query :MEASure:SOURce? <source>

The query returns the current source selection.

Returned Format [:MEASure:CGRade:SOURce] <source><NL>

Example This example places the currently specified sources in the string variable,
Source$, then prints the contents of the variable to the computer's screen.

10 DIM Source$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:CGRade:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END
23-19

Measure Commands
Measure Commands

book.book Page 20 Friday, July 12, 2002 1:51 PM
CGRade:ZLEVel

Command :MEASure:CGRade:ZLEvel [<source>]

This command measures logic zero level inside the eye window on the eye dia-
gram of the current color grade display. If the source is not set, the lowest
numbered signal display that is on will be the source of the measurement.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}

Example The following example measures the logic zero level.

10 OUTPUT 707;”:MEASure:CGRade:ZLEVel”
20 END

Query :MEASure:CGRade:ZLEVel? [<source>]

The query returns the logic zero level of the color grade display.

Returned Format [:MEASure:CGRade:ZLEVel] <value>[,<result_state>]<NL>

<value> The logic zero level.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current logic zero level in the numeric vari-
able, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:ZLEVel?”
30 ENTER 707;Value
40 PRINT Value
50 END

CLEar

Command :MEASure:CLEar

This command clears the measurement results from the screen. It is identical
to the :MEASure:SCRatch command.

Example The following example clears the current measurement results from the
screen.

10 OUTPUT 707;”:MEASure:CLEAR”
20 END
23-20

Measure Commands
Measure Commands

book.book Page 21 Friday, July 12, 2002 1:51 PM
DEFine

Command :MEASure:DEFine <meas_spec>

This command sets up the definition for measurements by specifying the delta
time, threshold, or top-base values. Changing these values may affect other
measure commands. The following table identifies the relationships between
user-DEFined values and other MEASure commands.

<meas_spec> {THResholds,TOPBase,EWINdow,CGRade,DELTatime}

Table 23-1. :MEASure:DEFine Interactions

MEASure Commands THResholds TOPBase EWINdow CGRAde DELTatime

RISEtime x x
FALLtime x x
PERiod x x
FREQuency x x
VTOP x
VBASe x
VAMPlitude x
PWIDth x x
NWIDth x x
OVERshoot x x
DUTYcycle x x
DELTatime x x
VRMS x x
PREShoot x x
VLOWer x x
VMIDdle x x
VUPPer x x
VAVerage x x
VARea x x
DELTatime x x x
CGRade:CRATio x x
CGRade:CROSsing x x
CGRade:DCDistortion x x
CGRade:DCYCle x x
CGRade:ERATio x
23-21

Measure Commands
Measure Commands

book.book Page 22 Friday, July 12, 2002 1:51 PM
Command :MEASure:DEFine THResholds,{{STANdard} |
{PERCent,<upper_pct>,<middle_pct>,<lower_pct>} |
{UNITs,<upper_volts>,<middle_volts>,<lower_volts>}}

<upper_pct>
<middle_pct>
<lower_pct>

An integer, –25 to 125.

<upper_units>
<middle_units>
<lower_units>

A real number specifying amplitude units.

Command :MEASure:DEFine TOPBase,{{STANdard} |{<top_volts>,<base_volts>}}

<top_volts>
<base_volts>

A real number specifying voltage.

Command :MEASure:DEFine EWINdow,<ewind1pct>,<ewind2pct>

<ewind1pct>
<ewind2pct>

An integer, 0 to 100, specifying an eye window as a percentage of the bit
period unit interval.

Example If one source is specified, both parameters apply to that signal. If two sources
are specified, the measurement is from the first positive edge on source 1 to
the second negative edge on source 2.

Source is specified either using MEASure:SOURce, or using the optional
<source> parameter when the DELTatime measurement is started.

Command :MEASure:DEFine CGRade,{RZ | NRZ}

This command defines the eye type.

Command :MEASure:DEFine DELTatime {<start edge_direction>,<start edge_number>,<start
edge_position>,<stop edge_direction>,<stop edge_number>,<stop edge_position>}

This command is used to set up edge parameters for delta time measurement.

<edge_direction> {RISing | FALLing | EITHer}

<edge_number> An integer, from 1 to 20.

<edge_position> {UPPer | MIDDle | LOWer}

Query :MEASure:DEFine? {EWINdow | THResholds | TOPBase | CGRade | DELTatime}

CGRade:EHEight x
CGRade:ESN x
CGRade:OFACtor x
CGRade:OLEVel x
CGRade:PWIDth x
CGRade:ZLEVel x

Table 23-1. :MEASure:DEFine Interactions (Continued)

MEASure Commands THResholds TOPBase EWINdow CGRAde DELTatime
23-22

Measure Commands
Measure Commands

book.book Page 23 Friday, July 12, 2002 1:51 PM
Returned Format [:MEASure:DEFine] EWIN,<signal_type><NL>

[:MEASure:DEFine] CGR,<signal_type><NL>

[:MEASure:DEFine] THR {{STAN} | {PERcent,<upper_pct>,<middle_pct>,<lower_pct>} |
{VOLTage, <upper_volts>,<middle_volts>,<lower_volts>}}<NL>

[:MEASure:DEFine] TOPB {{STAN} |{<top_volts>,<base_volts>}}<NL>

[:MEASure:DEFine] CGR {{RZ | NRZ}}

[:MEASure:DEFine] DELT, {<start edge_direction>,<start edge_number>,<start
edge_position>,<stop edge_direction>,<stop edge_number>,<stop edge_position>}<NL>

Example This example returns the current setup for the measurement thresholds to the
string variable, Setup$, then prints the contents of the variable to the com-
puter's screen.

10 DIM Setup$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:DEFINE? THRESHOLDS"
30 ENTER 707; Setup$
40 PRINT Setup$
50 END

DEFine CGRade

Command :MEASure:DEFine CGRade,{RZ | NRZ}

This command defines the eye type.

Mode Eye mode only.

Example This example sets the eye type to RZ eye.

10 OUTPUT 707;":MEASure:DEFine CGRade, RZ"
20 END

Query :MEASure:DEFine? CGRade

The query returns the eye type.

Returned Format [:MEASure:DEFine?]CGR, <signal_type>

<signal_type> {RZ | NRZ}

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric value for the voltage value will cause Error 138-
Suffix not allowed. Instead, use the convention for the suffix multiplier as described in
Chapter 4, “Message Communication and System Functions”.
23-23

Measure Commands
Measure Commands

book.book Page 24 Friday, July 12, 2002 1:51 PM
Example The following example checks the current eye type of the analyzer to the
string variable, Setup$, then prints the contents of the variable to the com-
puter's screen.

10 DIM Setup$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:DEFINE? CGRADE"
30 ENTER 707;Setup$
40 PRINT Setup$
50 END

DELTatime

Command :MEASure:DELTatime [<source>[,<source>]]

This command measures the time delay between two edges. If no source is
specified, then the sources specified using the :MEASure:SOURce command
are used. If only one source is specified, then the edges used for computing
delta time belong to that source. If two sources are specified, then the first
edge used in computing to delta time belongs to the first source and the sec-
ond edge belongs to the second source.

Mode Oscilloscope and TDR modes

<source> {CHANnel<N>| FUNCtion<N> | WMEMory<N> | RESPonse <N>}

<N> An integer, from 1 through 4.

Example The following example measures the delta time between channel 1 and chan-
nel 2.

10 OUTPUT 707;”:MEASURE:DELTATIME CHANNEL1,CHANNEL2”
20 END

Query :MEASure:DELTatime? [<source>[,<source>]]

The query returns the measured delta time value.

Returned Format [:MEASure:DELTatime] <value> [,<result_state>]<NL>

<value> Delta time from the first specified edge on one source to the next specified
edge on another source.

<result_state> If SENDVALID is ON, the result state is returned with the measurement
result. Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current value of delta time in the numeric
variable, Value, then prints the contents of the variable to the controller’s
screen. This example assumes the source was set using MEASure:SOURce.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:DELTATIME?”
30 ENTER 707;Value
23-24

Measure Commands
Measure Commands

book.book Page 25 Friday, July 12, 2002 1:51 PM
40 PRINT Value
50 END

DUTYcycle

Command :MEASure:DUTYcycle [<source>]

This command measures the ratio of the positive pulse width to the period.
Sources are specified with the MEASure:SOURce command or with the
optional parameter following the DUTYcycle command.

Mode Oscilloscope mode only.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4.

Example The following example measures the duty cycle of the last specified signal.

10 OUTPUT 707;”:MEASURE:DUTYCYCLE”
20 END

Query :MEASure:DUTYcycle? [<source>]

The query returns the measured duty cycle of the specified source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

<value> The ratio of the positive pulse width to the period.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current duty cycle of the specified signal in
the numeric variable, Value, then prints the contents of the variable to the
controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:DUTYCYCLE?”
30 ENTER 707;Value
40 PRINT Value
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.
23-25

Measure Commands
Measure Commands

book.book Page 26 Friday, July 12, 2002 1:51 PM
FALLtime

Command :MEASure:FALLtime [<source>]

This command measures the time at the upper threshold of the falling edge,
measures the time at the lower threshold of the falling edge, then calculates
the fall time. Sources are specified with the MEASure:SOURce command or
with the optional parameter following the FALLtime command.

The first displayed falling edge is used for the fall-time measurement. There-
fore, for best measurement accuracy, set the sweep speed as fast as possible
while leaving the falling edge of the waveform on the display.

 Fall time = time at lower threshold point – time at upper threshold point.

Mode All instrument modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | CGRade}

Where CHANnel<N>, FUNCtion<N>, RESPonse<N> and WMEMory<N>
apply in Oscilloscope and TDR modes only, and CGRade in Eye mode only.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example measures the fall time of the last specified signal.

10 OUTPUT 707;":MEASURE:FALLTIME"
20 END

Query :MEASure:FALLtime?[<source>]

The query returns the fall time of the specified source.

Returned Format [:MEASure:FALLtime] <value>[,<result_state>]<NL>

<value> Time at lower threshold – time at upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current value for fall time in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:FALLTIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

FREQuency

Command :MEASure:FREQuency [<source>]
23-26

Measure Commands
Measure Commands

book.book Page 27 Friday, July 12, 2002 1:51 PM
Measures the frequency of the first complete cycle on the screen using the
mid-threshold levels of the waveform (50% levels if standard measurements
are selected). The source is specified with the MEASure:SOURce command or
with the optional parameter following the FREQuency command.

The algorithm is:

If the first edge on screen is rising, then

frequency = 1/(time at second rising edge – time at first rising edge)

else,

frequency = 1/(time at second falling edge – time at first falling edge).

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4.

Example The following example measures the frequency of the last specified signal.

10 OUTPUT 707;”:MEASURE:FREQUENCY”
20 END

Query :MEASure:FREQuency? [<source>]

The query returns the measured frequency.

Returned Format [:MEASure:FREQuency] <value>[,<result_state>]<NL>

 <value> The frequency value, in Hertz, of the first complete cycle on the screen using
the mid-threshold levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current frequency of the signal in the
numeric variable, Freq, then prints the contents of the variable to the control-
ler’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:FREQUENCY?”
30 ENTER 707;Freq
40 PRINT Freq
50 END

HISTogram:HITS?

Query :MEASure:HISTogram:HITS? [<source>]
23-27

Measure Commands
Measure Commands

book.book Page 28 Friday, July 12, 2002 1:51 PM
This query returns the number of hits within the histogram. The source can be
specified with the optional parameter following the HITS query. The HISTo-
gram:HITS? query only applies to the histogram.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:HITS] <value>[,<result_state>]<NL>

<value> The number of hits in the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the number of hits within the current histo-
gram and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:HITS?”
30 ENTER 707;Histhits
40 PRINT Histhits
50 END

HISTogram:M1S?

Query :MEASure:HISTogram:M1S? [<source>]

This query returns the percentage of points that are within one standard devi-
ation of the mean of the histogram. The source can be specified with the
optional parameter following the M1S query. The HISTogram:M1S? query only
applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:M1S] <value>[,<result_state>]<NL>

<value> The percentage of points within one standard deviation of the mean of the his-
togram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the percentage of points within one standard
deviation of the mean of the current histogram and prints the result to the
controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M1S?”
30 ENTER 707;Histm1s
40 PRINT Histm1s
50 END
23-28

Measure Commands
Measure Commands

book.book Page 29 Friday, July 12, 2002 1:51 PM
HISTogram:M2S?

Query :MEASure:HISTogram:M2S? [<source>]

This query returns the percentage of points that are within two standard devi-
ations of the mean of the histogram. The sources can be specified with the
optional parameter following the M2S query. The HISTogram:M2S? query only
applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:M2S] <value>[,<result_state>]<NL>

<value> The percent of points within two standard deviations of the mean of the histo-
gram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the percentage of points within two standard
deviations of the mean of the current histogram and prints the result to the
controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M2S?”
30 ENTER 707;Histm2s
40 PRINT Histm2s
50 END

HISTogram:M3S?

Query :MEASure:HISTogram:M3S? [<source>]

This query returns the percentage of points that are within three standard
deviations of the mean of the histogram. The source can be specified with the
optional parameter following the M3S query. The HISTogram:M3S? query only
applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:M3S] <value>[,<result_state>] <NL>

<value> The percentage of points within three standard deviations of the mean of the
histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.
23-29

Measure Commands
Measure Commands

book.book Page 30 Friday, July 12, 2002 1:51 PM
Example The following example returns the percentage of points within three standard
deviations of the mean of the current histogram and prints the result to the
controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M3S?”
30 ENTER 707;Histm3s
40 PRINT Histm3s
50 END

HISTogram:MEAN?

Query :MEASure:HISTogram:MEAN? [<source>]

This query returns the mean of the histogram. The mean of the histogram is
the average value of all the points in the histogram. The source can be speci-
fied with the optional parameter following the MEAN query. The HISTo-
gram:MEAN? query only applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:MEAN] <value>[,<result_state>]<NL>

<value> The mean of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the mean of the current histogram and prints
the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:MEAN?”
30 ENTER 707;Histmean
40 PRINT Histmean
50 END

HISTogram:MEDian?

Query :MEASure:HISTogram:MEDian? [<source>]

This query returns the median of the histogram. The median of the histogram
is the time or voltage of the point at which 50% of the histogram is to the left
or right (above or below for vertical histograms). The source can be specified
with the optional parameter following the MEDian query. The HISTo-
gram:MEDian? query only applies to the histogram waveform.

<source> {HISTogram}
23-30

Measure Commands
Measure Commands

book.book Page 31 Friday, July 12, 2002 1:51 PM
Returned Format [:MEASure:HISTogram:MEDian] <value>[,<result_state>]<NL>

<value> The median of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the median of the current histogram and prints
the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:MEDIAN?”
30 ENTER 707;Histmed
40 PRINT Histmed
50 END

HISTogram:PEAK?

Query :MEASure:HISTogram:PEAK? [<source>]

This query returns the number of hits in the histogram's greatest peak. The
source can be specified with the optional parameter following the PEAK
query. The HISTogram:PEAK? query only applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:PEAK] <value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the number of hits in the histogram’s greatest
peak and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:PEAK?”
30 ENTER 707;Histpeak
40 PRINT Histpeak
50 END

HISTogram:PP?

Query :MEASure:HISTogram:PP? [<source>]
23-31

Measure Commands
Measure Commands

book.book Page 32 Friday, July 12, 2002 1:51 PM
This query returns the width of the histogram. The width is measured as the
time or voltage of the last histogram bucket with data in it minus the time or
voltage of the first histogram bucket with data in it. The source can be speci-
fied with the optional parameter following the PP query. The HISTogram:PP?
query only applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:PPos] <value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the width of the current histogram and prints
the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:PP?”
30 ENTER 707;Histpp
40 PRINT Histpp
50 END

HISTogram:PPOSition?

Query :MEASure:HISTogram:PPOSition? [<source>]

This query returns the position of the greatest peak of the histogram. If there
is more than one peak, then it returns the position of the first peak from the
lower boundary of the histogram window for vertical axis histograms. Other-
wise, in the case of horizontal axis histograms, it returns the position of the
first peak from the leftmost boundary of the histogram window. The optional
parameter MEASure:SOURce command can be used to specify the source for
the measurement. This query can only be applied to histogram data, therefore
the histogram must be turned on in order to use this query.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:PPosition] <value>[,<result_state>]<NL>

<value> The value of the greatest peak of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example 10 OUTPUT 707;”:MEASURE:HISTOGRAM:PPOSITION? HISTOGRAM”
20 ENTER 707;HMaxVal
30 PRINT HMaxVal
40 END
23-32

Measure Commands
Measure Commands

book.book Page 33 Friday, July 12, 2002 1:51 PM
HISTogram:SCALe?

Query :MEASure:HISTogram:SCALe? [<source>]

The query returns the scale of the histogram in hits per division. The source
can be specified with the optional parameter following the SCALe query. The
HISTogram:SCALe? query only applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:SCALe] <value>[,<result_state>]<NL>

<value> The scale of the histogram in hits.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the scale of the histogram whose source is
specified in MEASure:SOURce and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:SCALE?”
30 ENTER 707;Histscal
40 PRINT Histscal
50 END

HISTogram:STDDev?

Query :MEASURE:HISTogram:STDDev? [<source>]

This query returns the standard deviation of the histogram. The source can be
specified with the optional parameter following the STDDev query. The HIS-
Togram:STDDev? query only applies to the histogram waveform.

<source> {HISTogram}

Returned Format [:MEASure:HISTogram:STDDev] <value>[,<result_state>]<NL>

<value> The standard deviation of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the standard deviation of the histogram whose
source is specified using the MEASure:SOURce command, and prints the
result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:STDDEV?”
30 ENTER 707;Histstdd
40 PRINT Histstdd
23-33

Measure Commands
Measure Commands

book.book Page 34 Friday, July 12, 2002 1:51 PM
50 END

NWIDth

Command :MEASure:NWIDth [<source>]

Measures the width of the first negative pulse on the screen using the mid-
threshold levels of the waveform (50% levels with standard measurements
selected). The source is specified with the MEASure:SOURce command or
with the optional parameter following the NWIDth command.

 The algorithm is:

If the first edge on screen is rising, then

nwidth = time at the second rising edge – time at the first falling edge

else,

nwidth = time at the first rising edge – time at the first falling edge.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4.

Example The following example measures the width of the first negative pulse on
screen.

10 OUTPUT 707;”:MEASURE:NWIDTH”
20 END

Query :MEASure:NWIDth? [<source>]

The query returns the measured width of the first negative pulse of the speci-
fied source.

Returned Format [:MEASure:NWIDth] <value>[,<result_state>]<NL>

<value> The width of the first negative pulse on the screen using the mid-threshold
levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the current width of the first negative pulse on
screen in the numeric variable, Width, then prints the contents of the variable
to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:NWIDTH?”
23-34

Measure Commands
Measure Commands

book.book Page 35 Friday, July 12, 2002 1:51 PM
30 ENTER 707;Width
40 PRINT Width
50 END

OVERshoot

Command :MEASure:OVERshoot [<source>]

This command measures the overshoot of the first edge on the screen.
Sources are specified with the MEASure:SOURce command or with the
optional parameter following the OVERshoot command.

The algorithm is:

If the first edge onscreen is rising, then

 overshoot = (Local Vmax - Vtop) / Vamplitude

else

 overshoot = (Vbase – Local Vmin) / Vamplitude.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the overshoot of the first edge onscreen.

10 OUTPUT 707;":MEASURE:OVERSHOOT"
20 END

Query :MEASure:OVERshoot? [<source>]

The query returns the measured overshoot of the specified source.

Returned Format [:MEASure:OVERshoot] <value>[,<result_state>]<NL>

<value> Ratio of overshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current value of overshoot in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:OVERSHOOT?"
30 ENTER 707;Value
40 PRINT Value
50 END
23-35

Measure Commands
Measure Commands

book.book Page 36 Friday, July 12, 2002 1:51 PM
PERiod

Command :MEASure:PERiod [<source>]

This command measures the period of the first complete cycle on the screen
using the mid-threshold levels of the waveform (50% levels with standard
measurements selected). The source is specified with the MEASure:SOURce
command or with the optional parameter following the PERiod command.

The algorithm is:

If the first edge onscreen is rising then

 period = time at the second rising edge – time at the first rising edge

else

 period = time at the second falling edge – time at the first falling edge.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the period of the waveform.

10 OUTPUT 707;":MEASURE:PERIOD"
20 END

Query :MEASure:PERiod? [<source>]

The query returns the measured period of the specified source.

Returned Format [:MEASure:PERiod] <value>[,<result_state>]<NL>

<value> Period of the first complete cycle onscreen.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current period of the waveform in the numeric vari-
able, Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:PERIOD?"
30 ENTER 707;Value
40 PRINT Value
50 END

PWIDth

Command :MEASure:PWIDth [<source>]
23-36

Measure Commands
Measure Commands

book.book Page 37 Friday, July 12, 2002 1:51 PM
Measures the width of the first positive pulse on the screen using the mid-
threshold levels of the waveform (50% levels with standard measurements
selected). The source is specified with the MEASure:SOURce command or
with the optional parameter following the PWIDth command.

The algorithm is:

If the first edge on screen is rising, then

pwidth = time at the first falling edge – time at the first rising edge

else,

pwidth = time at the second falling edge – time at the first rising edge

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4.

Example The following example measures the width of the first positive pulse on the
screen.

10 OUTPUT 707;”:MEASURE:PWIDTH”
20 END

Query :MEASure:PWIDth? [<source>]

The query returns the measured width of the first positive pulse of the speci-
fied source.

Returned Format [:MEASure:PWIDth] <value>[,<result_state>]<NL>

<value> Width of the first positive pulse on the screen in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the value of the width of the first positive pulse
on the screen in the numeric variable, Width, then prints the contents of the
variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:PWIDTH?”
30 ENTER 707;Width
40 PRINT Width
50 END

RESults?

Query :MEASure:RESults?
23-37

Measure Commands
Measure Commands

book.book Page 38 Friday, July 12, 2002 1:51 PM
This query returns the results of the continuous measurements. The measure-
ment results always include only the current results. If SENDvalid is ON, the
measurement results state is returned immediately following the measure-
ment result. The measurement results include the current, minimum, maxi-
mum, mean, standard deviation, and statistical sample size of each
measurement.

If more than one measurement is running continuously, the values shown in
Table 23-3 on page 23-39 will be duplicated for each continuous measurement
from the first to last (top to bottom) of display. There may be up to four con-
tinuous measurements at a time.

Returned Format [:MEASure:RESults] <result list><NL>

<result list> A list of the measurement results, as in Table 23-2, separated with commas.

Note

In some cases, remote results on statistical measurements may display incorrect ASCII
mapping, such as a ç symbol in lieu of Σ (sigma).

Table 23-2. Results Values

Sendvalid OFF Sendvalid ON

Limit test OFF current result current result

validity

minimum minimum

maximum maximum

mean mean

standard deviation standard deviation

n-samples n-samples

Limit test ON current result current result

validity

minimum minimum

maximum maximum

mean mean

standard deviation standard deviation

n-samples n-samples

limit failures limit failures
23-38

Measure Commands
Measure Commands

book.book Page 39 Friday, July 12, 2002 1:51 PM
Example This example places the current results of the measurements in the string
variable, Result$, then prints the contents of the variable to the computer's
screen.

10 DIM Result$[200] !Dimension variable
20 OUTPUT 707;":MEASURE:RESULTS?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

limit total tests limit total tests

limit status limit status

Table 23-2. Results Values (Continued)

Sendvalid OFF Sendvalid ON

Table 23-3. Result States

Code Result Description

0 RESULT_CORRECT Result correct. No problem found.
1 RESULT_QUESTIONABLE Result questionable but could be measured.
2 RESULT_LESS_EQ Result less than or equal to value returned.
3 RESULT_GTR_EQ Result greater than or equal to value returned.
4 RESULT_INVALID Result returned is invalid.
5 EDGE_NOT_FOUND Result invalid. Required edge not found.
6 MAX_NOT_FOUND Result invalid. Max not found.
7 MIN_NOT_FOUND Result invalid. Min not found.
8 TIME_NOT_FOUND Result invalid. Requested time not found.
9 VOLT_NOT_FOUND Result invalid. Requested voltage not found.
10 TOP_EQUALS_BASE Result invalid. Top and base are equal.
11 MEAS_ZONE_SMALL Result invalid. Measurement zone too small.
12 LOWER_INVALID Result invalid. Lower threshold not on waveform.
13 UPPER_INVALID Result invalid. Upper threshold not on waveform.
14 UPPER_LOWER_INVALID Result invalid. Upper and lower thresholds are too close.
15 TOP_INVALID Result invalid. Top not on waveform.
16 BASE_INVALID Result invalid. Base not on waveform.
17 INCOMPLETE Result invalid. Completion criteria not reached.
18 INVALID_SIGNAL Result invalid. Measurement invalid for this type of signal.
19 SIGNAL_NOT_DISPLAYED Result invalid. Signal is not displayed.
20 CLIPPED_HIGH Result invalid. Waveform is clipped high.
21 CLIPPED_LOW Result invalid. Waveform is clipped low.
22 CLIPPED_HIGH_LOW Result invalid. Waveform is clipped high and low.
23 ALL_HOLES Result invalid. Data contains all holes.
23-39

Measure Commands
Measure Commands

book.book Page 40 Friday, July 12, 2002 1:51 PM
RISetime

Command :MEASure:RISetime [<source>]

This command measures the rise time of the first displayed edge by measuring
the time at the lower threshold of the rising edge, measuring the time at the
upper threshold of the rising edge, then calculating the rise time with the fol-
lowing algorithm:

 Rise time = time at upper threshold point – time at lower threshold point.

Sources are specified with the MEASure:SOURce command or with the
optional parameter following the RISetime command.

Mode All instrument modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | CGRade}

Where CHANnel<N>, FUNCtion<N>, RESPonse<N>, and WMEMory<N>
apply in Oscilloscope and TDR modes only, and CGRade in Eye mode only.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

With standard measurements selected, the lower threshold is at the 10% point
and the upper threshold is at the 90% point on the rising edge.

Example This example measures the rise time of the displayed signal.

10 OUTPUT 707;":MEASURE:RISETIME"
20 END

Query :MEASure:RISetime? [<source>]

The query returns the rise time of the specified source.

Returned Format [:MEASure:RISetime] <value>[,<result_state>]<NL>

<value> Rise time in seconds.

24 NO_DATA Result invalid. No data on screen.
25 CURSOR_OFF_SCREEN Result invalid. Cursor is not on screen.
26 MEASURE_CANCELLED Result invalid. Measurement aborted.
27 MEASURE_TIMEOUT Result invalid. Measurement timed-out.
28 NO_MEAS Result invalid. No measurement to track.
30 INVALID_EYE Result invalid. Eye pattern not found.
32 BAD_DARK_LEVEL Result invalid. Dark level is invalid.
33 NOT_1_SOURCE Result invalid. Color grade/gray scale database has more

than one source.

Table 23-3. Result States (Continued)
23-40

Measure Commands
Measure Commands

book.book Page 41 Friday, July 12, 2002 1:51 PM
<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current value of rise time in the numeric variable,
Rise, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RISETIME?"
30 ENTER 707;Rise
40 PRINT Rise
50 END

SCRatch

Command :MEASure:SCRatch

This command clears the measurement results from the screen.

Example This example clears the current measurement results from the screen.

10 OUTPUT 707;":MEASURE:SCRATCH"
20 END

SENDvalid

Command :MEASure:SENDvalid {{OFF | 0} | {ON | 1}}

This command enables the result state code to be returned with the :MEA-
Sure:RESults? query.

Example This example turns send valid function on.

10 OUTPUT 707;":MEASURE:SENDVALID ON"
20 END

Query :MEASure:SENDvalid?

The query returns the state of the Sendvalid control.

Returned Format [:MEASure:SENDvalid] {0 | 1}<NL>

Example This example places the current mode for SENDvalid in the string variable,
Mode$, then prints the contents of the variable to the computer's screen.

10 DIM Mode$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:SENDVALID?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END
23-41

Measure Commands
Measure Commands

book.book Page 42 Friday, July 12, 2002 1:51 PM
See Also Refer to the MEASure:RESults query for information on the results returned
and how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

SOURce

Command :MEASure:SOURce <source>[,<source>]

This command selects the source for measurements. You can specify one or
two sources with this command. All measurements except MEASure:
DEFine:DELTatime are made on the first specified source. The delta time
measurement uses two sources if two are specified. If only one source is spec-
ified, the delta time measurement uses that source for both of its parameters.
The source is always color grade/gray scale data in eye mode, except for aver-
age optical power and histogram measurements.

This is a global definition. It is used for all subsequent remote measurements
unless a different source is specified with the optional source parameter in the
measure command.

Mode Oscilloscope and TDR modes. Eye mode uses this for average optical power
measurements.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example selects channel 1 as the source for measurements.

10 OUTPUT 707;":MEASURE:SOURCE CHANNEL1"
20 END

Query :MEASure:SOURce?

The query returns the current source selection.

Returned Format [:MEASure:SOURce] <source>[,<source>]<NL>

Example This example places the currently specified sources in the string variable,
Source$, then prints the contents of the variable to the computer's screen.

10 DIM Source$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END
23-42

Measure Commands
Measure Commands

book.book Page 43 Friday, July 12, 2002 1:51 PM
TEDGe?

Query :MEASure:TEDGe? <meas_thres_txt>,<slope><occurrence> [,<source>]

The query returns the time interval between the trigger event and the speci-
fied edge (threshold level, slope, and transition) in oscilloscope mode. The
query will return the time interval between the reference plane and the speci-
fied edge in TDR mode.

Mode Oscilloscope and TDR modes.

<meas_thres_txt> UPPer, MIDDle, or LOWer to identify the threshold.

<slope> { – (minus) for falling | + (plus) for rising | <none> (the slope is optional; if no
slope is specified, + (plus) is assumed) }

<occurrence> A numeric value representing the edge of the occurrence. The desired edge
must be present on the display. Edges are counted with 1 being the first edge
from the left on the display.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels, functions, TDR responses and waveform memories 1, 2, 3, or 4.

Returned Format [:MEASure:TEDGe] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified edge (oscillo-
scope mode) or the time interval between the reference plane and the speci-
fied edge in TDR mode.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example returns the time interval between the trigger event and the 90%
threshold on the second rising edge of the source waveform to the numeric
variable, Time. The contents of the variable are then printed to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:TEDGE? UPPER,+2"
30 ENTER 707;Time
40 PRINT Time
50 END

Note

TEDGe is measured for a value less than or equal to 20. A value greater than 20 returns
data out of range.
23-43

Measure Commands
Measure Commands

book.book Page 44 Friday, July 12, 2002 1:51 PM
TMAX

Command :MEASure:TMAX [<source>]

This command measures the first time at which the first maximum voltage of
the source waveform occurred. The source is specified with the MEA-
Sure:SOURce command or with the optional parameter following the TMAX
command. In TDR mode, the time reported is measured with respect to the
reference plane.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<N> An integer, from 1 through 4.

Query :MEASure:TMAX? [<source>]

The query returns the time at which the first maximum voltage occurred.

Returned Format [:MEASure:TMAX] <time>[,<result_state>]<NL>

<time> Time at which the first maximum voltage occurred.

<result_state> If SENDVALID is ON, the result state is returned with the measurement
result. Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the time at which the first maximum voltage
occurred to the numeric variable, Time, then prints the contents of the vari-
able to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TMAX?”
30 ENTER 707;Time
40 PRINT Time
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.
23-44

Measure Commands
Measure Commands

book.book Page 45 Friday, July 12, 2002 1:51 PM
TMIN

Command :MEASure:TMIN [<source>]

This command measures the first time at which the first minimum voltage of
the source waveform occurred. The source is specified with the MEA-
Sure:SOURce command or with the optional parameter following the TMIN
command. In TDR mode, the time reported is measured with respect to the
reference plane.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<N> An integer, from 1 through 4.

Query :MEASure:TMIN? [<source>]

The query returns the time at which the first minimum voltage occurred.

Returned Format [:MEASure:TMIN] <time>[,<result_state>]<NL>

<time> Time at which the first minimum voltage occurred.

<result_state> If SENDVALID is ON, the result state is returned with the measurement
result. Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the time at which the first minimum voltage
occurred to the numeric variable, Time, then prints the contents of the vari-
able to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TMIN?”
30 ENTER 707;Time
40 PRINT Time
50 END

TVOLt?

Query :MEASure:TVOLt? <voltage>,<slope><occurrence>[,<source>]

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.
23-45

Measure Commands
Measure Commands

book.book Page 46 Friday, July 12, 2002 1:51 PM
The query returns the time interval between the trigger event and the speci-
fied voltage level and transition (oscilloscope mode) or the time interval
between the reference plane and the specified voltage level and transition
(TDR mode). The source is specified with the MEASure:SOURce command or
with the optional parameter following the TVOLt? query.

Mode Oscilloscope and TDR modes.

<voltage> Voltage level at which time will be measured.

<slope> The direction of the waveform change when the specified voltage is crossed,
rising (+) or falling (–).

<occurrence> The number of the crossing to be reported. If one, the first crossing is
reported; if two, the second crossing is reported, and so on.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<N> An integer, from 1 through 4.

Returned Format [:MEASure:TVOLt] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event (or reference plane, in TDR
mode) and the specified voltage level and transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the time interval between the trigger event and
the transition through –.250 Volts on the third rising edge of the source wave-
form to the numeric variable, Time. The contents of the variable are then
printed to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TVOLT? -.250,+3”
30 ENTER 707;Time
40 PRINT Time
50 END

VAMPlitude

Command :MEASure:VAMPlitude [<source>]

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the
headers may cause misinterpretation of returned data.
23-46

Measure Commands
Measure Commands

book.book Page 47 Friday, July 12, 2002 1:51 PM
This command calculates the difference between the top and base voltage of
the specified source. Sources are specified with the MEASure:SOURce com-
mand or with the optional parameter following the VAMPlitude command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example calculates the difference between the top and base voltage of
the specified source.

10 OUTPUT 707;":MEASURE:VAMPLITUDE"
20 END

Query :MEASure:VAMPlitude? [<source>]

The query returns the calculated difference between the top and base voltage
of the specified source.

Returned Format [:MEASure:VAMPlitude] <value>[,<result_state>]<NL>

<value> Calculated difference between the top and base voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current Vamplitude value in the numeric variable,
Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VAMPLITUDE?"
30 ENTER 707;Value
40 PRINT Value
50 END

VAVerage

Command :MEASure:VAVerage {CYCLe | DISPlay} [,<source>]

This command calculates the average voltage over the displayed waveform.
The source is specified with the MEASure:SOURce command or with the
optional parameter following the VAVerage command.

Mode Oscilloscope and TDR (DISPlay option only) modes.

CYCLe The CYCLe parameter instructs the average measurement to measure the
average voltage across the first period of the display. This option is valid in
oscilloscope mode only.

DISPlay The DISPlay parameter instructs the average measurement to measure all the
data on the display. This option is valid in both oscilloscope and TDR modes.
23-47

Measure Commands
Measure Commands

book.book Page 48 Friday, July 12, 2002 1:51 PM
<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

<N> An integer, from 1 through 4.

Example The following example calculates the average voltage over the displayed wave-
form.

10 OUTPUT 707;”:MEASURE:VAVERAGE DISPLAY”
20 END

Query :MEASure:VAVerage? {CYCLe | DISPlay}, [<source>]

The query returns the calculated average voltage of the specified source.

Returned Format [:MEASure:VAVerage] <value> [,<result_state>]<NL>

<value> The calculated average voltage.

<result_state> If SENDVALID is ON, the result state is returned with the measurement
result. Refer to Table 23-3 on page 23-39 for a list of the result states.

Example 10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VAVERAGE? DISPLAY”
30 ENTER 707;Average
40 PRINT Average
50 END

VBASe

Command :MEASure:VBASe [<source>]

Measures the statistical base of the waveform. The source is specified with the
MEASure:SOURce command or with the optional parameter following the
VBASe command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4. For TDR responses: 1, 2, 3, or 4.

Example The following example measures the voltage at the base of the waveform.

10 OUTPUT 707;”:MEASURE:VBASE”
20 END

Query :MEASure:VBASe? [<source>]

The query returns the measured voltage value at the base of the specified
source.

Returned Format [:MEASure:VBASe] <value>[,<result_state>]<NL>

<value> Voltage at the base of the waveform.
23-48

Measure Commands
Measure Commands

book.book Page 49 Friday, July 12, 2002 1:51 PM
<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the current voltage at the base of the waveform
to the numeric variable, Voltage, then prints the contents of the variable to the
controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VBASE?”
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VMAX

Command :MEASure:VMAX [<source>]

Measures the absolute maximum voltage present on the selected source wave-
form. The source is specified with the MEASure:SOURce command or with
the optional parameter following the VMAX command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4. For TDR responses: 1, 2, 3, or 4.

Example The following example measures the absolute maximum voltage on the wave-
form.

10 OUTPUT 707;”:MEASURE:VMAX”
20 END

Query :MEASure:VMAX? [<source>]

The query returns the measured absolute maximum voltage present on the
selected source waveform.

Returned Format [:MEASure:VMAX] <value>[,<result_state>]<NL>

<value> Absolute maximum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the measured absolute maximum voltage on
the waveform to the numeric variable, Maximum, then prints the contents of
the variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VMAX?”
23-49

Measure Commands
Measure Commands

book.book Page 50 Friday, July 12, 2002 1:51 PM
30 ENTER 707;Maximum
40 PRINT Maximum
50 END

VMIN

Command :MEASure:VMIN [<source>]

Measures the absolute minimum voltage present on the selected source wave-
form. The source is specified with the MEASure:SOURce command or with
the optional parameter following the VMIN command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4. For TDR responses: 1, 2, 3, or 4.

Example The following example measures the absolute minimum voltage on the wave-
form.

10 OUTPUT 707;”:MEASURE:VMIN”
20 END

Query :MEASure:VMIN? [<source>]

The query returns the measured absolute minimum voltage present on the
selected source waveform.

Returned Format [:MEASure:VMIN] <value>[,<result_state>]<NL>

<value> Absolute minimum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example returns the measured absolute minimum voltage on
the waveform to the numeric variable, Minimum, then prints the contents of
the variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VMIN?”
30 ENTER 707;Minimum
40 PRINT Minimum
50 END
23-50

Measure Commands
Measure Commands

book.book Page 51 Friday, July 12, 2002 1:51 PM
VPP

Command :MEASure:VPP [<source>]

This command measures the maximum and minimum voltages on the selected
source, then calculates the peak-to-peak voltage as the difference between the
two voltages. Sources are specified with the MEASure:SOURce command or
with the optional parameter following the VPP command.

Mode Oscilloscope and TDR modes only

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> An integer, from 1 through 4.

Example This example measures the peak-to-peak voltage.

10 OUTPUT 707;":MEASURE:VPP"
20 END

Query :MEASure:VPP? [<source>]

The query returns the specified source peak-to-peak voltage.

Returned Format [:MEASure:VPP] <value>[,<result_state>]<NL>

<value> Peak-to-peak voltage of the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current peak-to-peak voltage in the numeric variable,
Voltage, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VPP?"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VRMS

Command :MEASure:VRMS {CYCLe | DISPlay}, {AC | DC} [,<source>]

This command measures the RMS voltage of the selected waveform by sub-
tracting the average value of the waveform from each data point on the dis-
play. Sources are specified with the MEASure:SOURce command or with the
optional parameter following the VRMS command.

Mode Oscilloscope mode only.
23-51

Measure Commands
Measure Commands

book.book Page 52 Friday, July 12, 2002 1:51 PM
CYCLe The CYCLe parameter instructs the RMS measurement to measure the RMS
voltage across the first period of the display.

DISPlay The DISPLay parameter instructs the RMS measurement to measure all the
data on the display. Generally, RMS voltage is measured across one waveform
or cycle, however, measuring multiple cycles may be accomplished with the
DISPLay option. The DISPlay parameter is also useful when measuring noise.

AC The AC parameter is used to measure the RMS voltage subtracting out the DC
component.

DC The DC parameter is used to measure RMS voltage including the DC compo-
nent.

The AC RMS, DC RMS, and VAVG parameters are related as in the following
formula:

DCVRMS2 = ACVRMS2 + VAVG2

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the RMS voltage of the previously selected waveform.

10 OUTPUT 707;":MEASURE:VRMS CYCLE,AC"
20 END

Query :MEASure:VRMS? {CYCLe | DISplay}, {AC | DC} [,<source>]

The query returns the RMS voltage of the specified source.

Returned Format [:MEASure:VRMS] <value>[,<result_state>]<NL>

<value> RMS voltage of the selected waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example This example places the current AC RMS voltage over one period of the wave-
form in the numeric variable, Voltage, then prints the contents of the variable
to the computer’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VRMS? CYCLE,AC"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VTIMe?

Query :MEASure:VTIMe? <time> [,<source>]
23-52

Measure Commands
Measure Commands

book.book Page 53 Friday, July 12, 2002 1:51 PM
The query returns the measured voltage.

<time> The time interval between the trigger event and the specified edge (oscillo-
scope mode) or the time interval between the reference plane and the speci-
fied edge in TDR mode.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> An integer, from 1 to 4.

Mode Oscilloscope and TDR modes.

Returned Format [:MEASure:VTIMe] <value>[,<result_state>]<NL>

<value> Voltage at the specified time. In oscilloscope mode, <time> is the time mea-
sured from the trigger event. In TDR mode, <time> is measured with respect
to the reference plane.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the voltage at 500 ms in the numeric variable,
Value, then prints the contents to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VTIME? 500E–3”
30 ENTER 707;Value
40 PRINT Value
50 END

VTOP

Command :MEASure:VTOP [<source>]

This command measures the statistical top of the selected source waveform.
The source is specified with the MEASure:SOURce command or with the
optional parameter following the VTOP command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> For channels: Value is dependent on the type of plug-in and its location in the
instrument. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2,
3, or 4. For TDR responses: 1, 2, 3, or 4.

Example The following example measures the voltage at the top of the waveform.

10 OUTPUT 707;”:MEASURE:VTOP”
20 END

Query :MEASure:VTOP? [<source>]

The query returns the measured voltage at the top of the specified source.
23-53

Measure Commands
Measure Commands

book.book Page 54 Friday, July 12, 2002 1:51 PM
Returned Format [:MEASure:VTOP] <value>[,<result_state>]<NL>

<value> Voltage at the top of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result.
Refer to Table 23-3 on page 23-39 for a list of the result states.

Example The following example places the value of the voltage at the top of the wave-
form in the numeric variable, Value, then prints the contents of the variable to
the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VTOP?”
30 ENTER 707;Value
40 PRINT Value
50 END
23-54

book.book Page 1 Friday, July 12, 2002 1:51 PM
24

DCALib 24-3
PRESet 24-3
RATE 24-4
RESPonse 24-5
RESPonse:CALibrate 24-6
RESPonse:CALibrate:CANCel 24-6
RESPonse:CALibrate:CONTinue 24-7
RESPonse:HORizontal 24-7
RESPonse:HORizontal:POSition 24-8
RESPonse:HORizontal:RANGe 24-9
RESPonse:RISetime 24-10
RESPonse:TDRDest 24-11
RESPonse:TDRTDT 24-11
RESPonse:TDTDest 24-12
RESPonse:VERTical 24-13
RESPonse:VERTical:OFFSet 24-14
RESPonse:VERTical:RANGe 24-15
STIMulus 24-16
TDR/TDT Commands

TDR/TDT Commands
TDR/TDT Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
TDR/TDT Commands

The TDR/TDT command subsystem includes all commands necessary to set
up TDR/TDT measurements.

Slot Selection All of the TDR/TDT subsystem commands are of the form :TDR{2 | 4}:<com-
mand>. The {2 | 4} option is used to identify the slot in which you have
installed the TDR/TDT plug-in module. Select 2 if the module is in slots 1 and
2; 4 if the module is in slots 3 and 4. For example, if the module is in slots 3
and 4, and you want to issue the TDR subsystem PRESet command, you use
the command string :TDR4:PRESET.
24-2

TDR/TDT Commands
DCALib

book.book Page 3 Friday, July 12, 2002 1:51 PM
DCALib

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:DCALib {RPCalib | NORMal | QNORmal}

This command allows you to select the type of differential normalization (or
calibration) to be performed. In TDT mode, the NORMal and QNORmal proce-
dures are equivalent; only the NORMal parameter is recognized.

RPCalib Selects reference plane calibration. This option is provided for backward com-
patibility.

NORMal Sets the calibration procedure to differential normalization. This version of the
differential normalization procedure models the coupling between the test fix-
ture channels, and compensates for its effects.

QNORmal Sets the calibration procedure to differential normalization. This version of the
differential normalization procedure, also known as “Quick Normalization”,
assumes that the coupling between the test fixture channels is negligible.

Example The following example selects the quick normalization procedure.

10 OUTPUT 707;":TDR2:DCAL QNOR"
20 END

Query :TDR{2 | 4}:DCALib?

The query returns the select calibration mode.

Returned Format [:TDR{2 | 4}:DCAL] {RPCalib | NORMal | QNORmal}<NL>

PRESet

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:PRESet

This command performs an automatic set up of the instrument for TDR or
TDT measurements, based on the stimulus. This command does the following:

• Turn on TDR channels.

• If the stimulus is set to EXT ernal (see “STIMulus” on page 24-16), turn off
channel 1 or 3 and turn on channel 2 or 4.

• If the TDT destinations are not shown, turn on the TDT destination channels.
24-3

TDR/TDT Commands
RATE

book.book Page 4 Friday, July 12, 2002 1:51 PM
(see “RESPonse:TDTDest” on page 24-12).

• Set the timebase to 500 ps/div and positions the incident edge on screen.

• Turn on averaging and set best flatness (see “Acquire Commands” in chapter
11).

• For all channels that are on:

• Set the attenuation units to ratio.
• Set the attenuation to 1:1.
• Set the bandwidth to low (12.4 GHz). (Set high for external stimulus.)
• Set the units to volts.
• Set the channel scale to 100 mV/div.
• Set the channel offset to 200 mV or –200 mV for differential stimulus.

Example The following example presets the instrument for TDR/TDT operations.

10 OUTPUT 707;":TDR2:PRESET"
20 END

RATE

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RATE {AUTO | <rate>}

This command sets the period of the TDR pulse generator. You should usually
leave this set to AUTO unless you need to define a specific rate. In AUTO, the
instrument will attempt to keep subsequent periods off screen when the time-
base is changed.

<rate> Period to which you want to set the generator, in Hertz. You can add a suffix to
indicate that the rate is in Hertz (HZ, KHZ, and so on).

Example The following example sets the pulse generator to 120 kHz.

10 OUTPUT 707;":TDR2:RATE 120 KHZ"
20 END

Query :TDR{2 | 4}:RATE?

The query returns the current period of the pulse generator, even when the
control is set to AUTO.

The query is allowed in all modes.

Returned Format [:TDR{2 | 4}:RATE] {AUTO | <rate>}<NL>

Example The following example gets the current rate setting and stores it in the vari-
able Rate$, then prints the contents of the variable to the controller’s screen.

10 DIM Rate$[30]
24-4

TDR/TDT Commands
RESPonse

book.book Page 5 Friday, July 12, 2002 1:51 PM
20 OUTPUT 707;":TDR2:RATE?"
30 ENTER 707;Rate$
40 PRINT Rate$
50 END

RESPonse

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N> {ON | 1 | OFF | 0 | DIFFerential | COMMonmode | INDividual}

This command turns on or off a TDR or TDT normalized response.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

OFF Turns off the response for the specified stimulus.

ON Turns on the normalized response of the channel.

DIFFerential Turns on the differential response.

COMMonmode Turns on the common mode response.

INDividual Turns on the response for the corresponding channel. This option is valid for
responses computed by the differential normalization procedure, as set by
commands :TDR {2 | 4}:DCALib:NORMal or :TDR {2 | 4}:DCALib:QNORmal.

Example The following example turns on common mode response on response 1.

10 OUTPUT 707;":TDR2:RESPONSE1 COMMONMODE"
20 END

Query :TDR{2 | 4}:RESPonse<N>?

The query returns the current response setting for the specified stimulus.

The query is allowed in all modes.

Returned Format [:TDR{2 | 4}:RESPonse<N>] {OFF | DIFFerential | COMMonmode | INDividual | ON}<NL>

Note

The keyword NORMalize may also be used. This command is compatible with the
Agilent 83480/54750 and is equivalent to ON.
24-5

TDR/TDT Commands
RESPonse:CALibrate

book.book Page 6 Friday, July 12, 2002 1:51 PM
Example The following example gets the current response setting for response 2, stores
it in the variable Control$, then prints the contents of the variable to the con-
troller’s screen.

10 DIM Control$[20]
20 OUTPUT 707;":TDR2:RESPONSE2?"
30 ENTER 707;Control
40 PRINT Control
50 END

RESPonse:CALibrate

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate

This command begins a TDR or TDT normalization and reference plane cali-
bration. Which calibration is done (TDR or TDT) depends on the setting of the
TDRTDT control. See “RESPonse:TDRTDT” on page 24-11.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Example The following example begins a TDR or TDT calibration.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE"
20 END

RESPonse:CALibrate:CANCel

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate:CANCel

This command activates the cancel softkey during a TDR or TDT normaliza-
tion and reference plane calibration.

This command is retained for backward compatibility with the 83480/54750.
The preferred command is :CALibrate:CANCel.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.
24-6

TDR/TDT Commands
RESPonse:CALibrate:CONTinue

book.book Page 7 Friday, July 12, 2002 1:51 PM
Example The following example cancels the current calibration operation.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE:CANCEL"
20 END

RESPonse:CALibrate:CONTinue

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate:CONTinue

This command activates the continue softkey during a TDR or TDT normaliza-
tion and reference plane calibration.

This command is retained for backward compatibility with the 83480/54750.
The preferred command is :CALibrate:CONTinue.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Example The following example continues a paused calibration operation.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE:CONTINUE"
20 END

RESPonse:HORizontal

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal {AUTO | MANual}

This command specifies whether the TDR/TDT response should automatically
track the source channel’s horizontal scale (AUTO), or a user-defined scale
specified with the HORizontal:POSItion and HORizontal:RANGe commands
(MANual). AUTO is the usual setting.

Note

The keyword TSOurce may also be used. This command is compatible with the
Agilent 83480/54750 and is equivalent to AUTO.
24-7

TDR/TDT Commands
RESPonse:HORizontal:POSition

book.book Page 8 Friday, July 12, 2002 1:51 PM
<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Example The following example sets TDR response 1 to automatically track the source
channel’s horizontal scale:

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL AUTO"
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal?

The query returns the current horizontal tracking mode for the specified
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal] {AUTO | MANual}<NL>

Example The following example gets the current horizontal tracking mode for
response 1, puts it in the variable Track$, then prints the contents of the vari-
able to the controller’s screen:

10 DIM Track$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL?"
30 ENTER 707;Track$
40 PRINT Track$
50 END

RESPonse:HORizontal:POSition

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal:POSition <position>

This command specifies the horizontal position of the TDR/TDT response
when horizontal tracking is set to manual. The position is always referenced to
center screen.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

<position> Offset from the center of the screen, in seconds.

Example The following example sets the horizontal position for response 1 to 20 ns.
This assumes that manual tracking has already been selected.

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:POSITION 20E9"
24-8

TDR/TDT Commands
RESPonse:HORizontal:RANGe

book.book Page 9 Friday, July 12, 2002 1:51 PM
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal:POSition?

The query returns the current horizontal position setting for the specified
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal:POSition] <position><NL>

Example The following example gets the current horizontal position setting for
response 1, puts it into the variable Pos$, then prints the contents of the vari-
able to the controller’s screen.

10 DIM Pos$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:POSITION?"
30 ENTER 707;Pos$
40 PRINT Pos$
50 END

RESPonse:HORizontal:RANGe

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe <range>

This command specifies the range of the TDR/TDT response when the hori-
zontal tracking is set to manual.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

<range> Horizontal range in seconds.

Example The following example sets the horizontal range for TDR response 1 to
120 ms. This assumes that manual tracking has already been selected.

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:RANGE 120 MS"
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe?

The query returns the current horizontal range setting for the specified
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe] <range><NL>

Example The following example gets the current horizontal range setting for
response 2, stores it in the numeric variable Range, then prints the contents of
the variable to the controller’s screen.
24-9

TDR/TDT Commands
RESPonse:RISetime

book.book Page 10 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;":TDR2:RESPONSE2:HORIZONTAL:RANGE?"
20 ENTER 707;Range
30 PRINT Range
40 END

RESPonse:RISetime

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:RISetime <risetime>

This command sets the risetime for the normalized response. The risetime set-
ting is limited by the timebase settings and the record length. The normalize
response function allows you to change the risetime of the normalized step.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

<risetime> Risetime setting in seconds. The Risetime function allows you to change the
normalized step’s risetime within a range of values, with bounds established by
the current timebase and record length settings.

While the TDR step’s risetime applied to the system under test is fixed, the
measured response has a set of mathematical operations applied to it. These
mathematical operations effectively change the displayed response to the sys-
tem just as if a different TDR step risetime had actually been applied. This
allows you to select a risetime for TDR/TDT measurements that is close to the
actual risetime used in your system. This risetime value applies to both TDR
and TDT normalized channels.

Example The following example sets the risetime for response 1 to 100 ps.

10 OUTPUT 707;"TDR2:RESPONSE1:RISETIME 100 PS"
20 END

Query :TDR{2 | 4}:RESPonse<N>:RISetime?

The query returns the normalized response risetime setting.

Returned Format [:TDR{2 | 4}:RESPonse<N>:RISetime] <risetime><NL>

Example The following example gets the current risetime setting and stores it in the
numeric variable Risetime, then prints the contents of the variable to the con-
troller’s screen.

10 OUTPUT 707;":TDR2:RESPONSE1:RISETIME?"
20 ENTER 707;Risetime
30 PRINT Risetime
24-10

TDR/TDT Commands
RESPonse:TDRDest

book.book Page 11 Friday, July 12, 2002 1:51 PM
40 END

RESPonse:TDRDest

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse{1 | 3}:TDRDest CHANnel<N>

This command selects a TDR destination channel for an external stimulus.
When you use an external stimulus, you must use this command to specify
where the TDR channel is coming into the instrument. An external stimulus
may be generated from channels 1 or 3 only.

A channel is valid as a TDR destination if it meets the following criteria:

• Must be an electrical channel.
• Must not have an active TDR stimulus.
• Must not be the destination of a TDT measurement.

<N> An integer, 1 through 4.

Example The following example sets channel 2 as the TDR destination channel for
response 1:

10 OUTPUT 707;":TDR2:RESPONSE1:TDRDEST CHANNEL2"
20 END

Query :TDR{2 | 4}:RESPonse{1 | 3}:TDRDest?

The query returns the current TDR destination channel for the selected
response.

Returned Format [:TDR{2 | 4}:RESPonse{1 | 3}:TDRDest] <channel><NL>

Example The following example gets the current TDR destination channel for
response 3, stores it in the variable Dest$, then prints the contents of the vari-
able to the controller’s screen:

10 DIM Dest$[20]
20 OUTPUT 707;":TDR2:RESPONSE3:TDRDEST?"
30 ENTER 707;Dest$
40 PRINT Dest$
50 END

RESPonse:TDRTDT

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse{1| 2| 3 | 4}:TDRTDT {TDR | TDT}
24-11

TDR/TDT Commands
RESPonse:TDTDest

book.book Page 12 Friday, July 12, 2002 1:51 PM
This command controls the behavior of other :TDR{2| 4}:RESPonse commands
and queries. A response waveform is fully specified by the TDRTDT setting, as
well as by the stimulus value that is part of a “TDR{2 | 4}:RESPonse” com-
mand.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Example To turn on Response 1 waveform as TDR with stimulus = Chan1:

Set :TDR2:RESPonse1:TDRTDT to TDR
Set :TDR2:RESPonse1 to NORM

To turn on Response 2 waveform as TDT with stimulus = Chan1:

Set :TDR2:RESPonse1:TDTDest to Chan2
Set :TDR2:RESPonse1:TDRTDT to TDT
Set :TDR2:RESPonse1 to ON

RESPonse:TDTDest

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:TDTDest {NONE | CHANnel<N>}

This command selects a destination channel for a normalization measurement.

<N> An integer, 1 through 4. This RESPonse<N> value refers to the stimulus chan-
nel used to produce a response waveform, while the response waveforms are
numbered based on the destination channel. For TDR commands, the
response waveform numbers and RESPonse<N> refer to the same waveforms.
This is not the case for TDT related commands.

For differential and common mode stimuli, the TDT destination is implied as
follows:

• The TDT destination for channel 1 is channel 3.
• The TDT destination for channel 2 is channel 4.
• The TDT destination for channel 3 is channel 1.
• The TDT destination for channel 4 is channel 2.
24-12

TDR/TDT Commands
RESPonse:VERTical

book.book Page 13 Friday, July 12, 2002 1:51 PM
A channel is valid as a TDT destination if it meets the following criteria:

• Must be an electrical channel.
• Must not have an active TDR stimulus.
• Must not be the destination of another TDT measurement.
• Must not be the destination of a TDR measurement (external stimulus only).

You must select a valid TDT destination before setting the TDRTDT control to
TDT.

NONE Deselects a channel as a TDT destination. This frees the channel to be the
TDT destination of another TDR source.

<N> For CHANnel<N>, this value is an integer, 1 through 4, indicating the slot in
which the channel resides, followed by an optional A or B identifying which of
two possible channels in the slot is being referenced.

Example The following example selects channel 3 as the TDT destination channel for
response 4.

10 OUTPUT 707;":TDR2:RESPONSE4:TDTDEST CHANNEL3"
20 END

Query :TDR{2 | 4}:RESPonse<N>:TDTDest?

The query returns the current TDT destination channel for the specified
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:TDTDest] {NONE | <channel>}<NL>

Example The following example gets the TDT destination channel for response 1, puts
it in the variable Dest$, then prints the contents of the variable to the control-
ler’s screen.

10 DIM Dest$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:TDTDEST?"
30 ENTER 707;Dest$
40 PRINT Dest$
50 END

RESPonse:VERTical

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:VERTical {AUTO | MANual}

This command specifies whether the TDR/TDT response should automatically
track the source channel’s vertical scale (AUTO), or use a user-defined scale
specified with the VERTical:OFFSet and VERTical:RANGe commands (MAN-
ual). AUTO is the usual setting.
24-13

TDR/TDT Commands
RESPonse:VERTical:OFFSet

book.book Page 14 Friday, July 12, 2002 1:51 PM
<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Example The following example sets response 1 to use a user-defined vertical scale.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL MANUAL"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical?

The query returns the current vertical tracking mode for the specified
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical] {AUTO | MANual}<NL>

Example The following example gets the current vertical tracking mode for response 4,
puts it in the variable VertMode$, then prints the contents of the variable to
the controller’s screen.

10 DIM VertMode$[20]
20 OUTPUT 707;":TDR2:RESPONSE4:VERTICAL?"
30 ENTER 707;VertMode$
40 PRINT VertMode
50 END

RESPonse:VERTical:OFFSet

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>: VERTical:OFFSet <offset_value>

This command sets the vertical position of the specified response when verti-
cal tracking is set to MANual. The position is always referenced to center
screen.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

Note

The keyword TSOurce may also be used. This command is compatible with the
Agilent 83480/54750 and is equivalent to AUTO.
24-14

TDR/TDT Commands
RESPonse:VERTical:RANGe

book.book Page 15 Friday, July 12, 2002 1:51 PM
<offset_value> Offset value in the current channel UNITs. Suffix UNITs are ignored; only the
scalar part is used (m in mv).

Example The following example sets the vertical offset to 50 mV for response 1. This
assumes that the vertical tracking mode has already been set to MANual.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:OFFSET 50 MV"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical:OFFSet?

The query returns the vertical offset for the specified response. This informa-
tion is valid only when the vertical tracking mode is set to manual for the
response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical:OFFSet] <volts><NL>

Example The following example gets the vertical offset for response 1, stores it in the
numeric variable Offset, then prints the contents of the variable to the control-
ler’s screen.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:OFFSET?"
20 ENTER 707;Offset
30 PRINT OFFSET
40 END

RESPonse:VERTical:RANGe

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:VERTical:RANGe <range_value>

This command specifies the vertical range of the TDR/TDT response when the
vertical tracking mode is set to MANual.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to pro-
duce a response waveform, while the response waveforms are numbered
based on the destination channel. For TDR commands, the response wave-
form numbers and RESPonse<N> refer to the same waveforms. This is not the
case for TDT related commands.

<range_value> Vertical range in the current UNITs setting and suffix supplied. (The suffix
does not set the UNITs; it is ignored.)

Example The following example sets the vertical range to 5 volts for response 1. This
assumes that the vertical tracking mode has already been set to manual.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:RANGE 5 V"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical:RANGe?
24-15

TDR/TDT Commands
STIMulus

book.book Page 16 Friday, July 12, 2002 1:51 PM
The query returns the current vertical range setting for the specified
response. This information is valid only when the vertical tracking mode is set
to manual.

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical:RANGe] <volts><NL>

Example The following example gets the vertical range setting for response 1, stores it
in the numeric variable Range, then prints the contents of the variable on the
controller’s screen.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:RANGE?"
20 ENTER 707;Range
30 PRINT Range
40 END

STIMulus

This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:STIMulus {OFF | ON | ON1 | ON2 | ON1AND2 | DIFFerential | COMMonmode |
EXTernal | ON3 | ON4 | ON3AND4}

This command turns the TDR/TDT stimulus on or off. This command is set
before starting normalization to specify type of normalization or reference
plane calibration to perform. For the differential stimulus setting, a reference
plane calibration is executed unless you specify which normalization proce-
dure is to be executed using the :TDR {2 | 4}:DCALib command.

• The stimulus may be OFF, ON, or EXTernal.

• In slots 1 and 2, the stimulus may be OFF, ON1, ON2, ON1AND2, DIFFerential,
or COMMonmode.

• In slots 3 and 4, the stimulus may be OFF, ON3, ON4, ON3AND4, DIFFerential,
or COMMonmode.

OFF Turn off the pulse generator, using the channel as a regular analyzer channel.

ON, ON1, ON3,
External

Turn on the channel 1 or channel 3 pulse generator for single-ended TDR or
TDT measurements.

Note

After specifying the TDR/TDT stimulus, use the command :TDR<N>:PRESET. This com-
mand will set up the instrument for TDR or TDT measurements based on the selected
stimulus.
24-16

TDR/TDT Commands
STIMulus

book.book Page 17 Friday, July 12, 2002 1:51 PM
ON2, ON4 Turn on the channel 2 or channel 4 pulse generator for single-ended TDR or
TDT measurements.

ON1AND2, ON3AND4 Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for
simultaneous single-ended TDR or TDT measurements.

DIFFerential Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for dif-
ferential TDR or TDT measurements.

COMMonmode Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for com-
mon-mode TDR or TDT measurements.

Example The following example turns on pulse generators for channels 3 and 4 for sin-
gle-ended TDR measurements.

10 OUTPUT 707;":TDR4:STIMULUS ON3AND4"
20 END

Query :TDR{2 | 4}:STIMulus?

The query returns the current settings for the TDR pulse generators.

Returned Format [:TDR{2 | 4}:STIMulus] {OFF | ON | ON1 | ON2 | ON1AND2 | DIFFerential | COMMonmode |
EXTernal | ON3 | ON4 | ON3AND4}<NL>

Example The following example gets the current settings of the pulse generators and
stores it in the variable Stim$, then prints the contents of that variable to the
controller’s screen.

10 DIM Stim$[30]
20 OUTPUT 707;":TDR4:STIMULUS?"
30 ENTER 707;Stim$
40 PRINT Stim$
50 END
24-17

TDR/TDT Commands
STIMulus

book.book Page 18 Friday, July 12, 2002 1:51 PM
24-18

book.book Page 1 Friday, July 12, 2002 1:51 PM
25

ATTenuation 25-3
BWLimit 25-3
GATed 25-3
HYSTeresis 25-4
LEVel 25-4
SLOPe 25-4
SOURce 25-5
Trigger Commands

Trigger Commands
Trigger Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Trigger Commands

The scope trigger circuitry helps you locate the waveform you want to view.
Edge triggering identifies a trigger condition by looking for the slope (rising or
falling) and voltage level (trigger level) on the source you select. Any input
channel, auxiliary input trigger (4-channel scopes only), line, or external trig-
ger (2-channel scopes only) inputs can be used as the trigger source.

The commands in the TRIGger subsystem define the conditions for triggering.
The command set has been defined to closely represent the front-panel trig-
ger dialogs.
25-2

Trigger Commands
Trigger Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
ATTenuation

Command :TRIGger:ATTenuation <attenuation factor>[,{RATio | DECibel}]

This command controls the attenuation factor and units. The default attenua-
tion factor value is 1:1. The default attenuation units is ratio.

Query :TRIGger:ATTenuation?

The query returns the current attenuation factor and units.

Returned Format [:TRIGger:ATTenuation] <attenuation factor>[,{RATio | DECibel}]<NL>

BWLimit

Command :TRIGger:BWLimit {DIVided | HIGH | LOW}

This command controls an internal lowpass filter and a divider in the 86100A
trigger. The bandwidth of the trigger is limited to approximately 100 MHz.
DIVided mode is unaffected by the level, hysteresis, and slope settings. The
DIVided parameter is only valid if the mainframe has option 001.

Example The following example turns on the bandwidth limit filter for the 86100A trig-
ger:

10 OUTPUT 707;”:TRIGGER:BWLIMIT LOW”
20 END

Query :TRIGger:BWLimit?

The query returns the current setting for the specified trigger input.

Returned Format [:TRIGger:BWLimit] {HIGH | LOW| DIV}<NL>

GATed

Command :TRIGger:GATed {ON | 1 | OFF | 0}

This command enables or disables the ability of the instrument to respond to
trigger inputs.

Query :TRIGger:GATed?

The query returns the current gated setting.

Returned Format [:TRIGger:GATed] {1 | 0}<NL>
25-3

Trigger Commands
Trigger Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
HYSTeresis

Command :TRIGger:HYSTeresis {NORMal | HSENsitivity}

This command specifies the trigger hysteresis . NORMal is the typical hystere-
sis selection. HSENsitivity gives minimum hysteresis and the highest band-
width.

Query :TRIGger:HYSTeresis?

The query returns the current hysteresis setting.

Returned Format [:TRIGger:HYSTeresis] {NORMal | HSENSitivity}<NL>

LEVel

Command :TRIGger:LEVel <level>

This command specifies the trigger level. Only one trigger level is stored in the
analyzer.

<level> The trigger level on all trigger inputs.

Query :TRIGger:LEVel?

The query returns the trigger level.

Returned Format [:TRIGger:LEVel] <level> <NL>

SLOPe

Command :TRIGger:SLOPe {POSitive | NEGative}

This command specifies the slope of the edge on which to trigger.

Query :TRIGger:SLOPe?

The query returns the slope for the trigger.

Returned Format [:TRIGger:SLOPe] {POSitive | NEGative}<NL>
25-4

Trigger Commands
Trigger Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
SOURce

Command :TRIGger:SOURce [<trigger> {FPANel | FRUN | LMODule | RMODule}]

This command selects the trigger input. Front Panel, Left Module, and Right
Module are inputs from the front panel of the instrument. Free Run is inter-
nally generated, and is not affected by the settings of gates, level, slope, band-
width, or hysteresis.

<trigger> Front PANel, Left MODule, and Right MODule are inputs on the front of the
instrument. FreeRUN is internally generated and is unaffected by the settings
for gated, level, slope, bandwidth or hysteresis.

Query :TRIGger:SOURce?

The query returns the current trigger source of the current mode.

Returned Format [:TRIGger:SOURce] <trigger><NL>
25-5

book.book Page 6 Friday, July 12, 2002 1:51 PM

book.book Page 1 Friday, July 12, 2002 1:51 PM
26

BRATe 26-2
POSition 26-2
PRECision 26-3
PRECision:RFRequency 26-4
PRECision:TREFerence 26-5
RANGe 26-5
REFerence 26-6
SCALe 26-7
UNITs 26-7
Timebase Commands

Timebase Commands
Timebase Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Timebase Commands

The TIMebase subsystem commands control the horizontal (X axis) analyzer
functions.

BRATe

Command :TIMebase:BRATe <bit_rate>

This command sets the bit rate used when the time base units are bit period.

<bit_rate> The bit rate (in bits-per-second).

Example The following example sets the bit rate to 155.520 MHz.

10 OUTPUT 707;":TIMEBASE:BRATe 155.520E6"
20 END

Query :TIMebase:BRATe?

The query returns the bit rate setting.

Returned Format [:TIMebase:BRATe] <bit_rate><NL>

Example The following example places the current bit rate in the numeric variable, Set-
ting, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:BRATe?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

POSition

Command :TIMebase:POSition <position_value>

This command sets the time interval between the trigger event and the delay
reference point. The delay reference point is set with the TIMebase:REFer-
ence command.
26-2

Timebase Commands
Timebase Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
<position_value> The maximum value depends on the time/division setting. The value can
optionally have units of bits or seconds. If no units are specified,
<position_value> has the units of the current units setting.

Example This example sets the delay position to 2 ms.

10 OUTPUT 707;":TIMEBASE:POSITION 2E-3"
20 END

Query :TIMebase:POSition? [{BITS | TIME}]

The query returns the current delay value in seconds.

BITS bits/screen at bit rate

TIME seconds/division

Returned Format [:TIMebase:POSition] <position_value><NL>

Example This example places the current delay value in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

PRECision

Command :TIMebase:PRECision {ON|OFF}

This command enables and disables the precision timebase. Enabling the pre-
cision timebase will also set the time reference. Disabling the precision time-
base invalidates the time reference.

Example This example sets the precision timebase to on.

TDR/TDT Mode

In TDR/TDT mode, please note that the delay reference point is set to coincide with the
reference plane position.

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision
Timebase Module.
26-3

Timebase Commands
Timebase Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;":TIMEBASE:PRECISION ON"
20 END

Query :TIMebase:PRECision?

This query returns the state of the precision timebase.

Returned Format [:TIMebase:PRECision?] {0 | 1}<NL>

Example The following example places the current setting for precision timebase in the
variable Precision, then prints the contents of the variable to the controller
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:PRECISION?"
30 ENTER 707;Precision
40 PRINT Precision
50 END

PRECision:RFRequency

Command :TIMebase:PRECision:RFRequency <frequency>

This command specifies the frequency of the reference clock at the input of
the 86107A.

<frequency> The frequency is dependent upon the 86107A option number (9.0 GHz to
12.6 GHz and 18.0 GHz to 25.0 GHz for option 020 or, additionally, 38.0 GHz to
43.0 GHz for option 040).

Example This example specifies the frequency of the reference clock used by the preci-
sion timebase.

10 OUTPUT 707;":TIMEBASE:PRECISION:RFREQUENCY 9.95328 GHz"
20 END

Query :TIMebase:PRECision:RFRequency?

This query returns the user specified frequency of the reference clock.

Returned Format [:TIMebase:PRECision:RFRequency?] <frequency><NL>

Example This example returns the current setting of the reference clock frequency to
the variable, Frequency, then prints the contents of the variable to the con-
troller screen.

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision
Timebase Module.
26-4

Timebase Commands
Timebase Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:PRECISION:RFREQUENCY?"
30 ENTER 707;Frequency
40 PRINT Frequency
50 END

PRECision:TREFerence

Command :TIMebase:PRECision:TREFerence

This command sets the time reference. If the time reference fails to set, an
error is produced.

Example This example sets the time reference needed to enable the precision timebase.

10 OUTPUT 707;":TIMEBASE:PRECISION:TREFERENCE"
20 END

Query :TIMebase:PRECision:TREFerence?

This query returns the status of the time reference. A return value of 0 indi-
cates the time reference is not set; a return value of 1 indicates the time refer-
ence is set.

Returned Format [:TIMebase:PRECision:TREFerence] {0 | 1}

Example This example returns the current status of the time reference to the variable
status, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:PRECISION:TREFERENCE?"
30 ENTER 707;Status
40 PRINT Status
50 END

RANGe

Command :TIMebase:RANGe <full_scale_range>

This command sets the full-scale horizontal time in seconds. The range value
is ten times the time-per-division value. Range is always set in units of time
(seconds), not in bits.

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision
Timebase Module.
26-5

book.book Page 6 Friday, July 12, 2002 1:51 PM
<full_scale_range> 100 ps to 10 s

Example This example sets the full-scale horizontal range to 10 ms.

10 OUTPUT 707;":TIMEBASE:RANGE 10E-3"
20 END

Query :TIMebase:RANGe?

The query returns the current full-scale horizontal time.

Returned Format [:TIMebase:RANGe] <full_scale_range><NL>

Example This example places the current full-scale horizontal range value in the
numeric variable, Setting, then prints the contents of the variable to the com-
puter's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

REFerence

Command :TIMebase:REFerence {LEFT | CENTer}

This command sets the delay reference to the left or center side of the display.

Example This example sets the delay reference to the center of the display.

10 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
20 END

Query :TIMebase:REFerence?

The query returns the current delay reference position.

Returned Format [:TIMebase:REFerence] {LEFT | CENTer}<NL>

Example This example places the current delay reference position in the string vari-
able, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":TIMEBASE:REFERENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Timebase Commands
Timebase Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
SCALe

Command :TIMebase:SCALe <value>

This command sets the time base scale. This corresponds to the horizontal
scale value displayed as time/div on the analyzer screen.

<value> Value can optionally have units of seconds or bits. If no units are specified
<value> has units of the current units setting.

seconds: time per division
bits: bits on screen at bit rate setting

Example This example sets the scale to 10 ms/div.

10 OUTPUT 707;":TIMEBASE:SCALE 10E-3"
20 END

Query :TIMebase:SCALe? [{BITS | TIME}]

The query returns the current scale time setting. If the optional parameter is
omitted, the scale value returned is in the units of the current units setting
(bits or time).

BITS bits/screen at bit rate

TIME seconds/division

Returned Format [:TIMebase:SCALe] <time><NL>

Example This example places the current scale value in the numeric variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

UNITs

Command :TIMebase:UNITs {TIME | BITS}

This command sets the time base units.

Example The following example sets the time base units to bits.

10 OUTPUT 707;":TIMEBASE:UNITs BITS"
20 END

Query :TIMebase:UNITs?

The query returns the time base units.
26-7

Timebase Commands
Timebase Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
Returned Format [:TIMebase:UNITs] {TIME | BITS}<NL>

Example The following example places the current bit rate in the numeric variable, Set-
ting, then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:UNITs?"
30 ENTER 707;Setting
40 PRINT Setting
50 END
26-8

book.book Page 1 Friday, July 12, 2002 1:51 PM
27

BANDpass? 27-5
BYTeorder 27-5
COUNt? 27-6
DATA 27-7
FORMat 27-9
POINts? 27-11
PREamble 27-11
SOURce 27-15
SOURce:CGRade 27-16
TYPE? 27-17
XDISplay? 27-18
XINCrement? 27-18
XORigin? 27-19
XRANge? 27-19
XREFerence? 27-20
XUNits? 27-20
YDISplay? 27-21
YINCrement? 27-21
YORigin? 27-22
YRANge? 27-22
YREFerence? 27-23
YUNits? 27-23
Waveform Commands

Waveform Commands
Waveform Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a com-
puter and the analyzer. It contains commands to set up the waveform transfer
and to send or receive waveform records to or from the analyzer.

Data Acquisition

When the data is acquired using the DIGitize command, the data is placed in
the channel or function memory of the specified source. After the DIGitize
command, the analyzer is stopped. If the analyzer is restarted over GPIB or
the front panel, the data acquired with the DIGitize command is overwritten.

You can query the preamble, elements of the preamble, or waveform data
while the analyzer is running, but the data will reflect only the current acquisi-
tion, and subsequent queries will not reflect consistent data. For example, if
the analyzer is running and you query the X origin, the data is queried in a
separate GPIB command, and it is likely that the first point in the data will
have a different time than that of the X origin. This is due to data acquisitions
that may have occurred between the queries. For this reason, Agilent does
not recommend this mode of operation. Instead, you should use the DIGitize
command to stop the analyzer so that all subsequent queries will be consis-
tent.

Function data is volatile and must be read following a DIGitize command or
the data will be lost when the analyzer is turned off.

Waveform Data and Preamble

The waveform record consists of two parts: the preamble and the waveform
data. The waveform data is the actual sampled data acquired for the specified
source. The preamble contains the information for interpreting the waveform
27-2

Waveform Commands
Data Conversion

book.book Page 3 Friday, July 12, 2002 1:51 PM
data, including the number of points acquired, the format of the acquired data,
and the type of acquired data. The preamble also contains the X and Y incre-
ments, origins, and references for the acquired data.

The values in the preamble are set when you execute the DIGitize command.
The preamble values are based on the settings of controls in the ACQuire sub-
system.

Although you can change preamble values with a GPIB computer, you cannot
change the way the data is acquired. Changing the preamble values cannot
change the type of data that was actually acquired, the number of points actu-
ally acquired, etc.

C A U T I O N You must use extreme caution when changing any waveform
preamble values to ensure that the data is still useful. For example,
setting points in the preamble to a different value from the actual
number of points in the waveform results in inaccurate data.

The waveform data and preamble must be read or sent using two separate
commands: WAVeform:DATA and WAVeform:PREamble.

Data Conversion

Data sent from the analyzer must be scaled for useful interpretation. The val-
ues used to interpret the data are the X and Y origins, X and Y increments, and
X and Y references. These values can be read from the waveform preamble.

Conversion from Data Value to Units

To convert the waveform data values (essentially A/D counts) to real-world
units, such as volts, use the following scaling formulas:

Y-axis Units = (data value – Yreference) × Yincrement + Yorigin
X-axis Units = (data index – Xreference) × Xincrement + Xorigin,

where the data index starts at zero: 0, 1, 2,, n-1.

The first data point for the time (X-axis units) must be zero so the time of the
first data point is the X origin.
27-3

Waveform Commands
Conversion from Data Value to Units

book.book Page 4 Friday, July 12, 2002 1:51 PM
Note

This conversion is not required for waveform data values returned in ASCII format.
27-4

Waveform Commands
Data Format for GPIB Transfer

book.book Page 5 Friday, July 12, 2002 1:51 PM
Data Format for GPIB Transfer

There are four types of data formats that you can select with the WAVe-
form:FORMat command: ASCii, BYTE, WORD, and LONG. Refer to the FOR-
Mat command in this chapter for more information on data format.

Waveform Commands

BANDpass?

Query :WAVeform:BANDpass?

This query returns an estimate of the maximum and minimum bandwidth lim-
its of the source signal. Bandwidth limits are computed as a function of the
coupling and the selected filter mode. Cutoff frequencies are derived from the
acquisition path and software filtering.

Returned Format [:WAVeform:BANDpass]<upper_cutoff>,<lower_cutoff><NL>

<upper_cutoff> Maximum frequency passed by the acquisition system.

<lower_cutoff> Minimum frequency passed by the acquisition system.

Example This example places the estimated maximum and minimum bandwidth limits
of the source signal in the string variable, Bandwidth$, then prints the con-
tents of the variable to the computer's screen.

10 DIM Bandwidth$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:BANDPASS?"
30 ENTER 707;Bandwidth$
40 PRINT Bandwidth$
50 END

BYTeorder

Command :WAVeform:BYTeorder {MSBFirst | LSBFirst}
27-5

Waveform Commands
Waveform Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
This command selects the order in which bytes are transferred to and from
the analyzer using WORD and LONG formats. If MSBFirst is selected, the most
significant byte is transferred first. Otherwise, the least significant byte is
transferred first. The default setting is MSBFirst.

Example This example sets up the analyzer to send the most significant byte first dur-
ing data transmission.

10 OUTPUT 707;":WAVEFORM:BYTEORDER MSBFIRST"
20 END

Query :WAVeform:BYTeorder?

The query returns the current setting for the byte order.

Returned Format [:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>

Example This example places the current setting for the byte order in the string vari-
able, Setting$, then prints the contents of the variable to the computer screen.

10 DIM Setting$[10] !Dimension variable
20 OUTPUT 707;":WAVEFORM:BYTEORDER?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

COUNt?

Query :WAVeform:COUNt?

This query returns the fewest number of hits in all of the time buckets for the
currently selected waveform. For the AVERAGE waveform type, the count
value is the fewest number of hits for all time buckets. This value may be less
than or equal to the value specified with the ACQuire:COUNt command.

For the NORMAL, RAW, INTERPOLATE, and VERSUS waveform types, the
count value returned is one, unless the data contains holes (sample points
where no data is acquired). If the data contains holes, zero is returned.

Returned Format [:WAVeform:COUNt] <N><NL>

<N> An integer. Values range from 1 to 262144 for NORMal, RAW, or INTerpolate
types and from 1 to 32768 for VERSus type.

MSBFirst and LSBFirst

MSBFirst is for microprocessors, like Motorola’s, where the most significant byte resides
at the lower address. LSBFirst is for microprocessors, like Intel’s, where the least signifi-
cant byte resides at the lower address.
27-6

Waveform Commands
Waveform Commands

book.book Page 7 Friday, July 12, 2002 1:51 PM
Example This example places the current count field value in the string variable,
Count$, then prints the contents of the variable to the computer's screen.

10 DIM Count$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:COUNT?"
30 ENTER 707;Count$
40 PRINT Count$
50 END

DATA

Command :WAVeform:DATA <block_data>[,<block_data>]

This command transfers waveform data to the analyzer over GPIB and stores
the data in a previously specified waveform memory. The waveform memory is
specified with the WAVeform:SOURce command. Only waveform memories
may have waveform data sent to them. The format of the data being sent must
match the format previously specified by the waveform preamble for the desti-
nation memory.

VERSus data is transferred as two arrays. The first array contains the data on
the X axis, and the second array contains the data on the Y axis. The two
arrays are transferred one at a time over GPIB in a linear format. There are n
data points sent in each array, where n is the number in the points portion of
the preamble.

CGRade data is transferred as a two dimensional array, 320 words high and
450 words wide. The array corresponds to the graticule display, where each
word is a sample hit count. The array is transferred column by column, start-
ing with the upper left corner of the graticule.

The full-scale vertical range of the A/D converter will be returned with the
data query. You should use the Y-increment, Y-origin, and Y-reference values to
convert the full-scale vertical ranges to voltage values. You should use the
Y-range and Y-display values to plot the voltage values. All of these reference
values are available from the waveform preamble. Refer to "Conversion from
Data Value to Units" earlier in this chapter.

<block_data> Binary block data in the # format.

Example This example sends 1000 bytes of previously saved data to the analyzer from
the array, Set.

10 OUTPUT 707 USING "#,K";:WAVEFORM:DATA #800001000"
20 OUTPUT 707 USING "W";Set(*)
30 END
27-7

Waveform Commands
Waveform Commands

book.book Page 8 Friday, July 12, 2002 1:51 PM
Query :WAVeform:DATA?

The query outputs waveform data to the computer over the GPIB interface.
The data is copied from a waveform memory, function, channel buffer, or his-
togram previously specified with the WAVeform:SOURce command. The
returned data is described by the waveform preamble.

Returned Format [:WAVeform:DATA] <block_data>[,<block_data>]<NL>

Example This example places the current waveform data from channel 1 of the array
Wdata in the word format.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1 !Select source
30 OUTPUT 707;":WAVEFORM:FORMAT WORD" !Select word format
40 OUTPUT 707;":WAVEFORM:DATA?"
50 ENTER 707 USING "#,1A";Pound_sign$
53 ENTER 707 USING "#,1D";Header_length
55 ENTER 707 USING "#,"&VAL$(Header_length)&"D";Length
60 Length = Length/2 !Length in words
70 ALLOCATE INTEGER Wdata(1:Length)
80 ENTER 707 USING "#,W";Wdata(*)
90 ENTER 707 USING "-K,B";End$
100 END

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOL
sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no
leading or trailing blanks.

W is an HP BASIC image specifier that outputs 16-bit words with the most significant byte
first.

CGRade as Waveform Source

If the waveform source is CGRade, then the waveform fromat must be set to WORD.
WORD is the only format that works with color grade data.
27-8

Waveform Commands
Waveform Commands

book.book Page 9 Friday, July 12, 2002 1:51 PM
The format of the waveform data must match the format previously specified
by the WAVeform:FORMat, WAVeform:BYTeorder, and WAVeform:PREamble
commands.

FORMat

Command :WAVeform:FORMat {ASCii | BYTE | LONG | WORD}

This command sets the data transmission mode for waveform data output.
This command controls how the data is formatted when the data is sent from
the analyzer and pertains to all waveforms. The default format is ASCii.

ASCii ASCII formatted data consists of ASCII digits with each data value separated
by a comma. Data values can be converted to real values on the Y axis (for
example, volts) and transmitted in floating point engineering notation. In
ASCII:

• The value “99.999E+36” represents a hole level (a hole in the
acquisition data).

• The value “99.999E+33” represents a clipped-high level.
• The value “99.999E+30” represents a clipped-low level.

HP BASIC Image Specifiers

is an HP BASIC image specifier that terminates the statement when the last ENTER item
is terminated. EOI and line feed are the item terminators.

1A is an HP BASIC image specifier that places the next character received in a string vari-
able.

1D is an HP BASIC image specifier that places the next character in a numeric variable.

W is an HP BASIC image specifier that places the data in the array in word format with
the first byte entered as the most significant byte.

-K is an HP BASIC image specifier that places the block data in a string, including carriage
returns and line feeds until EOI is true or when the dimensioned length of the string is
reached.

B is an HP BASIC specifier that enters the next byte in a variable.
27-9

Waveform Commands
Waveform Commands

book.book Page 10 Friday, July 12, 2002 1:51 PM
BYTE BYTE formatted data is formatted as signed 8-bit integers. If you use BASIC,
you need to create a function to convert these signed bits to signed integers.
In byte format:

• The value 125 represents a hole level (a hole in the acquisition data).
• The value 127 represents a clipped-high level.
• The value 126 represents a clipped-low level.

Data is rounded when converted from a larger size to a smaller size. For wave-
form transfer into the analyzer:

• The maximum valid qlevel is 124.
• The minimum valid qlevel is –128.

LONG LONG formatted data is transferred as signed 32-bit integers in four bytes. If
WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each
word is sent first. If the BYTeorder is LSBFirst, the least significant byte of
each word is sent first. Long format is only applicable to histogram data
sources. In long format:

• The value 2046820352 represents a hole level (no sample data at the current
data point).

• Long format is only valid with histogram data sources.

WORD WORD formatted data is transferred as signed 16-bit integers in two bytes. If
WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each
word is sent first. If the BYTeorder is LSBFirst, the least significant byte of
each word is sent first. In word format:

• The value 31232 represents a hole level (no sample data at the current wave-
form data point).

• The value 32256 represents a clipped-high level.
• The value 31744 represents a clipped-low level.

For waveform transfer into the analyzer:

• The maximum valid qlevel is 30720.
• The minimum valid qlevel is –32736.

Example This example selects the WORD format for waveform data transmission.

10 OUTPUT 707;":WAVEFORM:FORMAT WORD"
20 END

Query :WAVeform:FORMat?

The query returns the current output format for transferring waveform data.

Returned Format [:WAVeform:FORMat] {ASCii | BYTE | LONG | WORD}<NL>
27-10

Waveform Commands
Waveform Commands

book.book Page 11 Friday, July 12, 2002 1:51 PM
Example This example places the current output format for data transmission in the
string variable, Mode$, then prints the contents of the variable to the com-
puter screen.

10 DIM Mode$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:FORMAT?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

POINts?

Query :WAVeform:POINts?

The query returns the points value in the current waveform preamble. The
points value is the number of time buckets contained in the waveform selected
with the WAVeform:SOURce command.

Returned Format [:WAVeform:POINts] <points><NL>

<points> An integer. Values range from 1 to 262144. See the ACQuire:POINts command
for more information.

Example This example places the current acquisition length in the numeric variable,
Length, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:POINTS?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also The ACQuire:POINts command in the ACQuire Commands chapter.

PREamble

Command :WAVeform:PREamble <preamble_data>

This command sends a waveform preamble to the previously selected wave-
form memory in the analyzer. The preamble contains the scaling and other val-
ues used to describe the data. The waveform memory is specified with the

Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn the headers
off. Otherwise, the headers may cause misinterpretation of returned data.
27-11

Waveform Commands
Waveform Commands

book.book Page 12 Friday, July 12, 2002 1:51 PM
WAVeform:SOURce command. Only waveform memories may have waveform
data sent to them. The preamble can be used to translate raw data into time
and voltage values.

The following lists the elements in the preamble.

<preamble_data> <format>, <type>, <points>,<count>, <X increment>,<X origin>,< X reference>, <Y increment>,
<Y origin>,<Y reference>, <coupling>, <X display range>, <X display origin>, <Y display range>,
<Y display origin>, <date, string>, <time, string>, <frame model #, string>, <module #, string>,
<acquisition mode>, <completion>, <X units>, <Y units>, <max bandwidth limit>,
<min bandwidth limit>

<date> A string containing the data in the format DD MMM YYYY, where DD is the day,
1 to 31; MMM is the month; and YYYY is the year.

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the
hour, 0 to 23, MM is the minute, 0 to 59, SS is the second, 0 to 59, and TT is the
hundreds of seconds, 0 to 99.

<frame model #> A string containing the model number and serial number of the frame in the
format MODEL#:SERIAL#.

<format> 0 for ASCII format.
1 for BYTE format.
2 for WORD format.

<type> 1 for RAW type.
2 for AVERAGE type.
3 not used
4 not used
5 for VERSUS type.
6 not used
7 for NORMAL type.
8 for DATABASE type.
9 for OHM units.
10 for REFLECT units.

<acquisition mode> 2 for SEQUENTIAL mode.

<coupling> 0 for AC coupling.

<x units>
<y units>

0 for UNKNOWN units.
1 for VOLT units.
2 for SECOND units.
3 for CONSTANT units.
4 for AMP units.
5 for DECIBEL units.
6 for HIT units.
7 for PERCENT units.
8 for WATT units.
27-12

Waveform Commands
Waveform Commands

book.book Page 13 Friday, July 12, 2002 1:51 PM
See Table 27-1 on page 27-13 for descriptions of all the waveform preamble
elements.

Query :WAVeform:PREamble?

The query outputs a waveform preamble to the computer from the waveform
source, which can be a waveform memory or channel buffer.

Returned Format [:WAVeform:PREamble] <preamble_data><NL>

Example This example outputs the current waveform preamble for the selected source
to the string variable, Preamble$.

10 DIM Preamble$[250] !Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
30 OUTPUT 707;":WAVEFORM:PREAMBLE?"
40 ENTER 707 USING "-K";Preamble$
50 END

See Also WAVeform:DATA

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOL
sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no
leading or trailing blanks.

Placing the Block in a String

-K is an HP BASIC image specifier that places the block data in a string, including carriage
returns and line feeds, until EOI is true, or when the dimensioned length of the string is
reached.

Table 27-1. Waveform Preamble Elements

Element Description

Format The format value describes the data transmission mode for
waveform data output. This command controls how the data is
formatted when it is sent from the analyzer. (See
WAVeform:FORMat.)

Type This value describes how the waveform was acquired. (See also
WAVeform:TYPE.)
27-13

Waveform Commands
Waveform Commands

book.book Page 14 Friday, July 12, 2002 1:51 PM
Points The number of data points or data pairs contained in the waveform
data. (See ACQuire:POINts.)

Count For the AVERAGE waveform type, the count value is the minimum
count or fewest number of hits for all time buckets. This value may
be less than or equal to the value requested with the ACQuire:COUNt
command. For NORMAL, RAW, INTERPOLATE, and VERSUS
waveform types, this value is 0 or 1. The count value is ignored when
it is sent to the analyzer in the preamble. (See WAVeform:TYPE and
ACQuire:COUNt.)

X increment The X increment is the duration between data points on the X axis.
For time domain signals, this is the time between points.
(See WAVeform:XINCrement.)

X Origin The X origin is the X-axis value of the first data point in the data
record.
For time domain signals, it is the time of the first point. This value is
treated as a double precision 64-bit floating point number.
(See WAVeform:XORigin.)

X Reference The X reference is the data point associated with the X origin. It is at
this data point that the X origin is defined. In this analyzer, the value
is always zero. (See WAVeform:XREFerence.)

Y Increment The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level.
(See WAVeform:YINCrement.)

Y Origin The Y origin is the Y-axis value at level zero. For voltage signals, it is
the voltage at level zero. (See WAVeform:YORigin.)

Y Reference The Y reference is the level associated with the Y origin. It is at this
level that the Y origin is defined. In this analyzer, this value is always
zero.
(See WAVeform:YREFerence.)

Coupling The input coupling of the waveform. The coupling value is ignored
when sent to the analyzer in the preamble.

X Display Range The X display range is the X-axis duration of the waveform that is
displayed. For time domain signals, it is the duration of time across
the display. (See WAVeform:XRANge.)

Table 27-1. Waveform Preamble Elements (Continued)

Element Description
27-14

Waveform Commands
Waveform Commands

book.book Page 15 Friday, July 12, 2002 1:51 PM
SOURce

Command :WAVeform:SOURce {WMEMory<N> | FUNCtion<N> | CHANnel<N> | HISTogram |
RESPonse<N> | CGRade}

This command selects a channel, function, TDR response, waveform memory,
histogram, or color grade/gray scale as the waveform source.

X Display Origin The X display origin is the X-axis value at the left edge of the display.
For time domain signals, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point
number.
(See WAVeform:XDISplay.)

Y Display Range The Y display range is the Y-axis duration of the waveform which is
displayed. For voltage waveforms, it is the amount of voltage across
the display. (See WAVeform:YRANge.)

Y Display Origin (See WAVeform:YDISplay.)

Date The date that the waveform was acquired or created.

Time The time that the waveform was acquired or created.

Frame Model # The model number of the frame that acquired or created this
waveform.
The frame model number is ignored when it is sent to an analyzer in
the preamble.

Acquisition Mode The acquisition sampling mode of the waveform.

Complete The complete value is the percent of time buckets that are complete.
The complete value is ignored when it is sent to the analyzer in the
preamble. (See WAVeform:COMPlete.)

X Units The X-axis units of the waveform. (See WAVeform:XUNits.)

Y Units The Y-axis units of the waveform. (See WAVeform:YUNits.)

Band Pass The band pass consists of two values that are an estimation of the
maximum and minimum bandwidth limits of the source signal. The
bandwidth limit is computed as a function of the selected coupling
and filter mode. (See the WAVeform:BANDpass query.)

Table 27-1. Waveform Preamble Elements (Continued)

Element Description
27-15

Waveform Commands
Waveform Commands

book.book Page 16 Friday, July 12, 2002 1:51 PM
<N> An integer, 1 through 4.

Example This example selects channel 1 as the waveform source.

10 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
20 END

Query :WAVeform:SOURce?

The query returns the currently selected waveform source.

Returned Format [:WAVeform:SOURce] {WMEMory<N> | FUNCtion<N> | RESPonse<N> | CHANnel<N> |
HISTogram | CGRade}<NL>

Example This example places the current selection for the waveform source in the
string variable, Selection$, then prints the contents of the variable to the com-
puter screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SOURce:CGRade

Command :WAVeform:SOURce:CGRade {CHANnel<N> | FUNCtion<N> | CGMemory}

CGRade as Waveform Source

If the waveform source is set to CGRade, the default source is the first database signal
displayed. To set the CGRade source you must use the :WAVeform:SORUce:CGRade
command.

RESPonse<N> as Waveform Source

TDR responses are valid sources for waveform queries only if the current settings for
channel bandwidth, record length, and timebase match the settings valid during the TDR
normalization procedure. In the case of a mismatch, the TDR response is not displayed
and queries such as :WAV:POINTS? will return an error message indicating that the
“source is not valid”.

Long Format

Histogram data sources require long format.
27-16

Waveform Commands
Waveform Commands

book.book Page 17 Friday, July 12, 2002 1:51 PM
This command sets the color grade source for waveform commands. The
default is the first displayed database signal.

CHANnel<N> Corresponds to the channel databases.

FUNCtion<N> Corresponds to the function databases.

<N> An integer, 1 through 4.

Example The following example sets the channel 1 database as the CGRade source.

:WAVeform:SOURce:CGRade CHAN1

:WAVeform:SOURce CGRade

The CGRade parameter in the second command corresponds to the channel 1
database.

Query :WAVeform:SOURce:CGRade?

The query returns the current color grade source.

Returned Format [:WAVeform:SOURce:CGRade] {CHANnel<N> | FUNCtion<N> | CGMemory}<NL>

Example The following example gets the current color grade source and store the value
in the string array, setting.

write_IO (“:WAVeform:SOURce:CGRade?”);
read_IO (Setting, SETTING_SIZE);

TYPE?

Query :WAVeform:TYPE?

This query returns the current acquisition data type for the currently selected
source. The type returned describes how the waveform was acquired. The
waveform type may be NORMAL, RAW, INTERPOLATE, AVERAGE, or VER-
SUS.

NORMAL Normal data consists of the last data point in each time bucket.

RAW Raw data consists of one data point in each time bucket with no interpolation.

INTERPOLATE In the interpolate acquisition type, the last data point in each time bucket is
stored, and additional data points are filled in between the acquired data
points by interpolation.

AVERAGE Average data consists of the average of the first n hits in a time bucket, where
n is the value in the count portion of the preamble. Time buckets that have
fewer than n hits return the average of the data they contain. If the
ACQuire:COMPlete parameter is set to 100%, then each time bucket must
contain the number of data hits specified with the ACQuire:COUNt command.
27-17

Waveform Commands
Waveform Commands

book.book Page 18 Friday, July 12, 2002 1:51 PM
VERSUS VERSus data consists of two arrays of data: one containing the X-axis values,
and the other containing the Y-axis values. Versus waveforms can be gener-
ated using the FUNCtion subsystem commands.

Returned Format [:WAVeform:TYPE] {NORMal | RAW | INTerpolate | AVERage | VERSus}<NL>

Example This example places the current acquisition data type in the string variable,
Type$, then prints the contents of the variable to the computer's screen.

10 DIM Type$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:TYPE?"
30 ENTER 707;Type$
40 PRINT Type$
50 END

XDISplay?

Query :WAVeform:XDISplay?

This query returns the X-axis value at the left edge of the display. For time
domain signals, it is the time at the start of the display. For VERSus type wave-
forms, it is the value at the center of the X-axis of the display. This value is
treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XDISplay] <value><NL>

<value> A real number representing the X-axis value at the left edge of the display.

Example This example returns the X-axis value at the left edge of the display to the
numeric variable, Value, then prints the contents of the variable to the com-
puter screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

XINCrement?

Query :WAVeform:XINCrement?

This query returns the duration between data points on the X axis. For time
domain signals, this is the time difference between consecutive data points for
the currently specified waveform source. For VERSus type waveforms, this is
the duration between levels on the X axis. For voltage waveforms, this is the
voltage corresponding to one level.
27-18

Waveform Commands
Waveform Commands

book.book Page 19 Friday, July 12, 2002 1:51 PM
Returned Format [:WAVeform:XINCrement] <value><NL>

<value> A real number representing the duration between data points on the X axis.

Example This example places the current Xincrement value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xincrement value through the WAVeform:PREamble query.

XORigin?

Query :WAVeform:XORigin?

This query returns the X-axis value of the first data point in the data record.
For time domain signals, it is the time of the first point. For VERSus type
waveforms, it is the X-axis value at level zero. For voltage waveforms, it is the
voltage at level zero. The value returned by this query is treated as a double
precision 64-bit floating point number.

Returned Format [:WAVeform:XORigin] <value><NL>

<value> A real number representing the X-axis value of the first data point in the data
record.

Example This example places the current Xorigin value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XORIGIN?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xorigin value through the WAVeform:PREamble query.

XRANge?

Query :WAVeform:XRANge?
27-19

Waveform Commands
Waveform Commands

book.book Page 20 Friday, July 12, 2002 1:51 PM
This query returns the X-axis duration of the displayed waveform. For time
domain signals, it is the duration of the time across the display. For VERSus
type waveforms, it is the duration of the waveform that is displayed on the
X axis.

Returned Format [:WAVeform:XRANge] <value><NL>

<value> A real number representing the X-axis duration of the displayed waveform.

Example This example returns the X-axis duration of the displayed waveform to the
numeric variable, Value, then prints the contents of the variable to the com-
puter's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

XREFerence?

Query :WAVeform:XREFerence?

This query returns the data point or level associated with the Xorigin data
value. It is at this data point or level that the X origin is defined. In this ana-
lyzer, the value is always zero.

Returned Format [:WAVeform:XREFerence] 0<NL>

Example This example places the current X reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xreference value through the WAVeform:PREamble query.

XUNits?

Query :WAVeform:XUNits?

This query returns the X-axis units of the currently selected waveform source.
The currently selected source may be a channel, function, or waveform mem-
ory.
27-20

Waveform Commands
Waveform Commands

book.book Page 21 Friday, July 12, 2002 1:51 PM
Returned Format [:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP | DECibels}<NL>

Example This example returns the X-axis units of the currently selected waveform
source to the string variable, Unit$, then prints the contents of the variable to
the computer's screen.

10 DIM Unit$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:XUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

YDISplay?

Query :WAVeform:YDISplay?

This query returns the Y-axis value at the center of the display, in the units of
the current waveform source.

Returned Format [:WAVeform:YDISplay] <value><NL>

<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y display value to the numeric variable,
Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

YINCrement?

Query :WAVeform:YINCrement?

This query returns the duration between the Y-axis levels.

• For BYTE and WORD data, it is the value corresponding to one level incre-
ment in terms of waveform units.

• For ASCII data format, the YINCrement is the full range covered by the A/D
converter.

Returned Format [:WAVeform:YINCrement] <real_value><NL>

<real_value> A real number in exponential (NR3) format.
27-21

Waveform Commands
Waveform Commands

book.book Page 22 Friday, July 12, 2002 1:51 PM
Example This example places the current Yincrement value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Yincrement value through the WAVeform:PREamble query.

YORigin?

Query :WAVeform:YORigin?

This query returns the Y-axis value at level zero.

• For BYTE and WORD data, and voltage signals, it is the voltage at level zero.

• For ASCII data format, the YORigin is the Y-axis value at the center of the
data range. Data range is returned in the Y increment.

Returned Format [:WAVeform:YORigin] <real_value><NL>

<real_value> A real number in exponential (NR3) format.

Example This example places the current Y origin value in the numeric variable, Center,
then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YORIGIN?"
30 ENTER 707;Center
40 PRINT Center
50 END

See Also You can obtain the YORigin value through the WAVeform:PREamble query.

YRANge?

Query :WAVeform:YRANge?

This query returns the range of Y values (in terms of waveform units) across
the entire display.

Returned Format [:WAVeform:YRANge] <value><NL>

<value> A real number representing the Y-axis duration of the displayed waveform.

Example This example returns the current Y Range value to the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
27-22

Waveform Commands
Waveform Commands

book.book Page 23 Friday, July 12, 2002 1:51 PM
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

YREFerence?

Query :WAVeform:YREFerence?

This query returns the level associated with the Y origin. It is at this level that
the Y origin is defined. In this analyzer, the value is always zero.

Returned Format [:WAVeform:YREFerence] <integer_value><NL>

<integer_value> Always 0.

Example This example places the current Y Reference value for the currently specified
source in the numeric variable, Value, then prints the contents of the variable
to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the YReference value through the WAVeform:PREamble query.

YUNits?

Query :WAVeform:YUNits?

This query returns the Y-axis units of the currently selected waveform source.
The currently selected source may be a channel, function, waveform memory,
TDR response, or color grade/gray scale data.

Returned Format [:WAVeform:YUNits] {UNKNown | VOLT | OHM | SECond | REFLect | CONStant | AMP |
WATT}<NL>

Example This example returns the Y-axis units of the currently selected waveform
source to the string variable, Unit$, then prints the contents of the variable to
the computer's screen.

10 DIM Unit$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:YUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END
27-23

Waveform Commands
Waveform Commands

book.book Page 24 Friday, July 12, 2002 1:51 PM
27-24

book.book Page 1 Friday, July 12, 2002 1:51 PM
28

DISPlay 28-3
LOAD 28-3
SAVE 28-4
XOFFset 28-4
XRANge 28-4
YOFFset 28-5
YRANge 28-6
Waveform Memory Commands

Waveform Memory Commands
Waveform Memory Commands

book.book Page 2 Friday, July 12, 2002 1:51 PM
Waveform Memory Commands

The Waveform Memory Subsystem commands allow you to save and display
waveforms, memories, and functions.

<N> Indicates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the waveform
memory number (1-4).
28-2

Waveform Memory Commands
Waveform Memory Commands

book.book Page 3 Friday, July 12, 2002 1:51 PM
DISPlay

Command :WMEMory<N>:DISPlay {{ON|1}|{OFF|0}}

This command enables or disables the viewing of the selected waveform mem-
ory.

<N> The memory number is an integer from 1 to 4.

Example This example turns on the waveform memory 1 display.

10 OUTPUT 707;":WMEMORY1:DISPLAY ON"
20 END

Query :WMEMory<N>:DISPlay?

The query returns the state of the selected waveform memory.

Returned Format [:WMEMory<N>:DISPlay] {1 | 0}<NL>

LOAD

Command :WMEMory<N>:LOAD <file_name>

This command loads an analyzer waveform memory location with a waveform
from a file which has an internal waveform format (extension .wfm) or a ver-
bose/yvalues waveform format (extension .txt). You can load the file either
from the C:\ drive or A:\ drive. See the examples below.

The scope assumes the default path for waveforms is C:\User Files\Waveforms.
To use a different path, please specify the path and file name completely.

<N> The memory number is an integer from 1 to 4.

<file_name> Specifies the file to load, and has either a .wfm or .txt extension.

Examples This example loads waveform memory 4 with a file that has the internal wave-
form format.

10 OUTPUT 707;":WMEMORY4:LOAD ""c:\User Files\Waveforms\waveform.wfm"""
20 END

This example loads waveform memory 3 with a file on the floppy drive that has
the internal waveform format.

10 OUTPUT 707;":WMEMORY3:LOAD ""a:\waveform.wfm"""
20 END

Related Commands DISK:LOAD, DISK:STORe
28-3

Waveform Memory Commands
Waveform Memory Commands

book.book Page 4 Friday, July 12, 2002 1:51 PM
SAVE

Command :WMEMory<N>:SAVE {CHANnel<N> | WMEMory<N> | FUNCtion<N> | RESPonse<N>}

This command stores the specified channel, waveform memory, TDR
response, or function to the waveform memory. The channel or function must
be displayed (DISPlay set to ON) or an error status is returned. You can save
waveforms to waveform memories whether the waveform memory is displayed
or not.

<N> An integer from 1 to 4.

Example This example saves channel 1 to waveform memory 4.

10 OUTPUT 707;":WMEMORY4:SAVE chan1"
20 END

XOFFset

Command :WMEMory<N>:XOFFset <offset_value>

This command sets the x-axis, horizontal position for the selected waveform
memory's display scale. Position is referenced to center screen.

<N> The memory number is an integer from 1 to 4.

<offset_value> The horizontal offset (position) value.

Example This example sets the x-axis, horizontal position for waveform memory 3 to
0.1 seconds (100 ms).

10 OUTPUT 707;":WMEMORY3:XOFFSET 0.1"
20 END

Query :WMEMory<N>:XOFFset?

The query returns the current x-axis, horizontal position for the selected
waveform memory.

Returned Format [:WMEMory<N>:XOFFset] <offset_value><NL>

XRANge

Command :WMEMory<N>:XRANge <range_value>

This command sets the x-axis, horizontal range for the selected waveform
memory's display scale. The horizontal scale is the horizontal range divided by
10.
28-4

Waveform Memory Commands
Waveform Memory Commands

book.book Page 5 Friday, July 12, 2002 1:51 PM
<N> The memory number is an integer from 1 to 4.

<range_value> The horizontal range value.

Example This example sets the x-axis, horizontal range of waveform memory 2 to
435 microseconds.

10 OUTPUT 707;":WMEMORY2:XRANGE 435E-6"
20 END

Query :WMEMory<N>:XRANge?

The query returns the current x-axis, horizontal range for the selected wave-
form memory.

Returned Format [:WMEMory<N>:XRANge] <range_value><NL>

YOFFset

Command :WMEMory<N>:YOFFset <offset_value>

This command sets the y-axis (vertical axis) offset for the selected waveform
memory.

<N> The memory number is an integer from 1 to 4.

<offset_value> The vertical offset value.

Example This example sets the y-axis (vertical) offset of waveform memory 2 to 0.2V.

10 OUTPUT 707;":WMEMORY2:YOFFSET 0.2"
20 END

Query :WMEMory<N>:YOFFset?

The query returns the current y-axis (vertical) offset for the selected wave-
form memory.

Returned Format [:WMEMory<N>:YOFFset] <offset_value><NL>
28-5

Waveform Memory Commands
Waveform Memory Commands

book.book Page 6 Friday, July 12, 2002 1:51 PM
YRANge

Command :WMEMory<N>:YRANge <range_value>

This command sets the y-axis, vertical range for the selected memory. The
vertical scale is the vertical range divided by 8.

<N> The memory number is an integer from 1 to 4.

<range_value> The vertical range value.

Example This example sets the y-axis (vertical) range of waveform memory 3 to
0.2 volts.

10 OUTPUT 707;":WMEMORY3:YRANGE 0.2"
20 END

Query :WMEMory<N>:YRANge?

The query returns the Y-axis, vertical range for the selected memory.

Returned Format [:WMEMory<N>:YRANge] <range_value><NL>
28-6

book.book Page 1 Friday, July 12, 2002 1:51 PM
29

Agilent 83480A Commands Not Used in the Agilent 86100A/B 29-2
Language Compatibility

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 2 Friday, July 12, 2002 1:51 PM
Agilent 83480A Commands Not Used in the
Agilent 86100A/B

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (1 of 6)

Programming Commands/Queries Replacement Commands/Queries

Common Commands

*LRN SYSTEM:SETUP

Root Level Commands

:AER? No replacement

:ERASe No replacement

:HEEN :AEEN

:MENU No replacement

:MERGe No replacement

:STORe:PMEMory1 No replacement

:TEER No replacement

System Commands :SYSTem

:SYSTem:KEY No replacement

Calibration Commands :CALibrate

:CALibrate:FRAMe:CANCel :CALibrate:CANcel

:CALibrate:FRAMe:CONTinue :CALibrate:CONTinue

:CALibrate:FRAMe:DATA No replacement

:CALibrate:FRAMe:DONE? :CALibrate:STATus?

:CALibrate:FRAMe:MEMory? No replacement

:CALibrate:PLUGin:ACCuracy :CALibrate:MODule:STATus

:CALibrate:PLUGin:CANCel :CALibrate:CANcel

:CALibrate:PLUGin:CONTinue :CALibrate:CONTinue
29-2

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 3 Friday, July 12, 2002 1:51 PM
:CALibrate:PLUGin:DONE? :CALibrate:STATus?

:CALibrate:PLUGin:MEMory? No replacement

:CALibrate:PLUGin:OFFSet :CALibrate:MODule:OFFSet

:CALibrate:PLUGin:OPOWer :CALibrate:MODule:OPOWer

:CALibrate:PLUGin:OPTical :CALibrate:MODule:OPTical

:CALibrate:PLUGin:OWAVelength :CALibrate:MODule:OWAVelength

:CALibrate:PLUGin:TIME? :CALibrate:MODule:TIME?

:CALibrate:PLUGin:VERTical :CALibrate:MODule:VERtical

:CALibrate:PROBe :CALibrate:PROBe CHANnel<N>

Channel Commands :CHANnel

:CHANnel<N>:AUTOscale :AUToscale

:CHANnel<N>:SKEW :CALibrate:SKEW

Disk Commands :DISK

:DISK:DATA? No replacement

:DISK:FORMat No replacement

Display Commands :DISPlay

:DISPlay:ASSign No replacement

:DISPlay:CGRade :SYSTem:MODE EYE

:DISPlay:CGRade? :SYSTem:MODE?

:DISPlay:COLumn :DISPlay:LABel

:DISPlay:DATA :WAVeform:DATA

:DISPlay:DWAVeform No replacement

:DISPlay:FORMat No replacement

:DISPlay:INVerse :DISPlay:LABel

:DISPlay:LINE :DISPlay:LABel

:DISPlay:MASK No replacement

:DISPlay:ROW :DISPlay:LABel

:DISPlay:SOURce No replacement

:DISPlay:STRing :DISPlay:LABel

:DISPlay:TEXT :DISPlay:LABel:DALL

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (2 of 6)
29-3

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 4 Friday, July 12, 2002 1:51 PM
FFT Commands :FFT

FFT is not available in the 86100A/B.

Function Commands :FUNCtion

:FUNCtion<N>:ADD No replacement

:FUNCtion<N>:BWLimit No replacement

:FUNCtion<N>:DIFFerentiate No replacement

:FUNCtion<N>:DIVide No replacement

:FUNCtion<N>:FFT No replacement, FFT not available

:FUNCtion<N>:INTegrate No replacement

:FUNCtion<N>:MULTiply No replacement

:FUNCtion<N>:ONLY :FUNCtion<N>:MAGNify

Hardcopy Commands :HARDcopy

:HARDcopy:ADDRess :HARDcopy:DPRinte

:HARDcopy:BACKground :HARDcopy:IMAGe INVert

:HARDcopy:BACKground? No replacement

:HARDcopy:DESTination No replacement

:HARDcopy:DEVice No replacement

:HARDcopy:FFEed No replacement

:HARDcopy:FILename No replacement

:HARDcopy:LENGth No replacement

:HARDcopy:MEDia No replacement

Histogram Commands :HISTogram

:HISTogram:RRATe :DISPlay:RRATe

:HISTogram:RUNTil :ACQuire:RUNTil

:HISTogram:SCALe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:OFFSet :HISTogram:SCALe:SIZE

:HISTogram:SCALe:RANGe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:SCALe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:TYPE :HISTogram:SCALe:SIZE

Limit Test Commands :LTESt

:LTESt:SSCReen:DDISk:BACKground :LTESt:SSCReen:IMAGe

:LTESt:SSCReen:DDISk:MEDia No replacement

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (3 of 6)
29-4

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 5 Friday, July 12, 2002 1:51 PM
:LTESt:SSCReen:DDISk:PFORmat No replacement

:LTESt:SSCReen:DPRinter:ADDRess No replacement

:LTESt:SSCReen:DPRinter:BACKground No replacement

:LTESt:SSCReen:DPRinter:MEDia No replacement

:LTESt:SSCReen:DPRinter:PORT No replacement

:LTESt:SSUMmary:ADDRess No replacement

:LTESt:SSUMmary:MEDia No replacement

:LTESt:SSUMmary:PFORmat No replacement

:LTESt:SSUMmary:PORT No replacement

Marker Commands :MARKer

:MARKer:CURSor? No replacement. Use individual queries.

:MARKer:MEASurement:READout No replacement

:MARKer:MODE :MARKer:STATe

:MARKer:MODE? No replacement

:MARKer:TDELta? :MARKer:XDELta?

:MARKer:TSTArt :MARKer:X1Position

:MARKer:TSTOp :MARKer:X2Position

:MARKer:VDELta :MARKer:YDELta

:MARKer:VSTArt :MARKer:Y1Position

:MARKer:VSTOp :MARKer:Y2Position

Mask Test Commands :MTESt

:MTESt:AMASk:CReate No replacement

:MTESt:AMASk:SOURce No replacement

:MTESt:AMASk:UNITs No replacement

:MTESt:AMASk:XDELta No replacement

:MTESt:AMASk:YDELta No replacement

:MTESt:AMODe No replacement

:MTESt:COUNt:FWAVeforms? MTESt:COUNt:HITS? TOTal

:MTESt:FENable No replacement

:MTESt:MASK:DEFine No replacement a

:MTESt:POLYgon:DEFine No replacement a

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (4 of 6)
29-5

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 6 Friday, July 12, 2002 1:51 PM
:MTESt:POLYgon:DELete No replacement a

:MTESt:POLYgon:MOVE No replacement a

:MTESt:RECall :MTESt:LOAD

:MTESt:SAVE No replacement

:MTESt:SSCReen:DDISk:BACKground :MTESt:SSCReen:IMAGe

:MTESt:SSCReen:DDISk:MEDia No replacement

:MTESt:SSCReen:DDISk:PFORmat No replacement

:MTESt:SSCReen:DPRinter No replacement

:MTESt:SSCReen:DPRinter:ADDRess No replacement

:MTESt:SSCReen:DPRinter:BACKground No replacement

:MTESt:SSCReen:DPRinter:MEDia No replacement

:MTESt:SSCReen:DPRinter:PFORmat No replacement

:MTESt:SSCReen:DPRinter:PORT No replacement

:MTESt:SSUMmary:ADDRess No replacement

:MTESt:SSUMmary:BACKground No replacement

:MTESt:SSUMmary:MEDia No replacement

:MTESt:SSUMmary:PFORmat No replacement

:MTESt:SSUMmary:PORT No replacement

Measure Commands :MEASure

:MEASure:CGRade:ERCalibrate :CALibrate:ERATio:STARt CHANnel<N>

:MEASure:CGRade:ERFactor No replacement

:MEASure:CGRade:QFACtor :MEASure:CGRade:ESN

:MEASure:FFT No replacement. FFT not available.

:MEASure:HISTogram:HITS Query only

:MEASure:HISTogram:MEAN Query only

:MEASure:HISTogram:MEDian Query only

:MEASure:HISTogram:M1S Query only

:MEASure:HISTogram:M2S Query only

:MEASure:HISTogram:OFFSET? No replacement

:MEASure:HISTogram:PEAK Query only

:MEASure:HISTogram:PP Query only

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (5 of 6)
29-6

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 7 Friday, July 12, 2002 1:51 PM
a Refer to the Infiniium DCA Online Help to view information about defining custom masks.

:MEASure:PREShoot No replacement

:MEASure:STATistics No replacement. Statistics always on.

:MEASure:TEDGe Query only

:MEASure:VLOWer No replacement

:MEASure:VMIDdle No replacement

:MEASure:VTIMe Query only

:MEASure:VUPPer No replacement

Timebase Commands :TIMebase

:TIMebase:DELay :TIMebase:POSition

:TIMebase:VIEW No replacement

:TIMebase:WINDow:DELay No replacement

:TIMebase:WINDow:POSition No replacement

:TIMebase:WINDow:RANGe No replacement

:TIMebase:WINDow:SCALe No replacement

:TIMebase:WINDow:SOURce No replacement

Trigger Commands :TRIGger

:TRIGger:SWEep :TRIGger:SOURce FRUN

:TRIGger:SWEep? :TRIGger:SOURce?

:TRIGger<N>:BWLimit :TRIGger:BWLimit and :TRIGger:GATed

:TRIGger<N>:PROBe :TRIGger:ATTenuation

Waveform Commands :WAVeform

:WAVeform:COMPlete No replacement

:WAVeform:COUPling No replacement

:WAVeform:VIEW? No replacement

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A/B (6 of 6)
29-7

Language Compatibility
Agilent 83480A Commands Not Used in the Agilent 86100A/B

book.book Page 8 Friday, July 12, 2002 1:51 PM
29-8

book.book Page 1 Friday, July 12, 2002 1:51 PM
30

Error Queue 30-2
Error Numbers 30-3
Command Error 30-3
Execution Error 30-4
Device- or Analyzer-Specific Error 30-4
Query Error 30-5
List of Error Messages 30-6
Error Messages

Error Messages
Error Messages

book.book Page 2 Friday, July 12, 2002 1:51 PM
Error Messages

This chapter describes the error messages and how they are generated. The
possible causes for the generation of the error messages are also listed in
Table 30-1 on page 30-6.

Error Queue

As errors are detected, they are placed in an error queue. This queue is first
in, first out. If the error queue overflows, the last error in the queue is
replaced with error –350, “Queue overflow.” Anytime the error queue over-
flows, the oldest errors remain in the queue, and the most recent error is dis-
carded. The length of the analyzer's error queue is 30 (29 positions for the
error messages, and 1 position for the “Queue overflow” message). Reading an
error from the head of the queue removes that error from the queue, and
opens a position at the tail of the queue for a new error. When all errors have
been read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occur:

• the instrument is powered up,

• a *CLS command is sent,

• the last item from the queue is read, or

• the instrument is switched from talk only to addressed mode on the front panel.
30-2

Error Messages
Error Numbers

book.book Page 3 Friday, July 12, 2002 1:51 PM
Error Numbers

The error numbers are grouped according to the type of error that is detected.

• +0 indicates no errors were detected.

• –100 to –199 indicates a command error was detected.

• –200 to –299 indicates an execution error was detected.

• –300 to –399 indicates a device-specific error was detected.

• –400 to –499 indicates a query error was detected.

• +1 to +32767 indicates an analyzer-specific error has been detected.

Refer to the Agilent 86100A/B online Help for analyzer specific errors.

Command Error

An error number in the range –100 to –199 indicates that an IEEE 488.2 syn-
tax error has been detected by the instrument's parser. The occurrence of any
error in this class sets the command error bit (bit 5) in the event status regis-
ter and indicates that one of the following events occurred:

• An IEEE 488.2 syntax error was detected by the parser. That is, a controller-
to-analyzer message was received that is in violation of the IEEE 488.2 stan-
dard. This may be a data element that violates the analyzer's listening formats,
or a data type that is unacceptable to the analyzer.

• An unrecognized header was received. Unrecognized headers include incorrect
analyzer-specific headers and incorrect or unimplemented IEEE 488.2 com-
mon commands.

• A Group Execute Trigger (GET) was entered into the input buffer inside of an
IEEE 488.2 program message.

Events that generate command errors do not generate execution errors, ana-
lyzer-specific errors, or query errors.
30-3

Error Messages
Execution Error

book.book Page 4 Friday, July 12, 2002 1:51 PM
Execution Error

An error number in the range –200 to –299 indicates that an error was
detected by the instrument's execution control block. The occurrence of any
error in this class causes the execution error bit (bit 4) in the event status reg-
ister to be set. It also indicates that one of the following events occurred:

• The program data following a header is outside the legal input range or is in-
consistent with the analyzer's capabilities.

• A valid program message could not be properly executed due to some analyzer
condition.

Execution errors are reported by the analyzer after expressions are evaluated
and rounding operations are completed. For example, rounding a numeric
data element will not be reported as an execution error. Events that generate
execution errors do not generate command errors, analyzer specific errors, or
query errors.

Device- or Analyzer-Specific Error

An error number in the range of –300 to –399 or +1 to +32767 indicates that
the instrument has detected an error caused by an analyzer operation that did
not properly complete. This may be due to an abnormal hardware or firmware
condition. For example, this error may be generated by a self-test response
error, or a full error queue. The occurrence of any error in this class causes the
analyzer-specific error bit (bit 3) in the event status register to be set.
30-4

Error Messages
Query Error

book.book Page 5 Friday, July 12, 2002 1:51 PM
Query Error

An error number in the range –400 to –499 indicates that the output queue
control of the instrument has detected a problem with the message exchange
protocol. An occurrence of any error in this class causes the query error bit
(bit 2) in the event status register to be set. An occurrence of an error also
means one of the following is true:

• An attempt is being made to read data from the output queue when no output
is either present or pending.

• Data in the output queue has been lost.
30-5

Error Messages
List of Error Messages

book.book Page 6 Friday, July 12, 2002 1:51 PM
List of Error Messages

Table 30-1 is a list of the error messages that are returned by the parser on
this analyzer.

Table 30-1. Error Messages

0 No error The error queue is empty. Every error in the queue has been read (SYSTEM:ERROR?
query) or the queue was cleared by power-up or *CLS.

-100 Command error This is the generic syntax error used if the analyzer cannot detect more specific errors.

-101 Invalid character A syntactic element contains a character that is invalid for that type.

-102 Syntax error An unrecognized command or data type was encountered.

-103 Invalid separator The parser was expecting a separator and encountered an illegal character.

-104 Data type error The parser recognized a data element different than one allowed. For example,
numeric or string data was expected but block data was received.

-105 GET not allowed A Group Execute Trigger was received within a program message.

-108 Parameter not allowed More parameters were received than expected for the header.

-109 Missing parameter Fewer parameters were received than required for the header.

-112 Program mnemonic too long The header or character data element contains more than twelve characters.

-113 Undefined header The header is syntactically correct, but it is undefined for the analyzer. For example,
*XYZ is not defined for the analyzer.

-121 Invalid character in number An invalid character for the data type being parsed was encountered. For example, a
“9” in octal data.

-123 Numeric overflow Number is too large or too small to be represented internally.

-124 Too many digits The mantissa of a decimal numeric data element contained more than 255 digits
excluding leading zeros.

-128 Numeric data not allowed A legal numeric data element was received, but the analyzer does not accept one in
this position for the header.

-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix is
inappropriate for the analyzer.

-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow suffixes.

-141 Invalid character data Either the character data element contains an invalid character or the particular
element received is not valid for the header.

-144 Character data too long

-148 Character data not allowed A legal character data element was encountered where prohibited by the analyzer.

-150 String data error This error can be generated when parsing a string data element. This particular error
message is used if the analyzer cannot detect a more specific error.
30-6

Error Messages
List of Error Messages

book.book Page 7 Friday, July 12, 2002 1:51 PM
-151 Invalid string data A string data element was expected, but was invalid for some reason. For example, an
END message was received before the terminal quote character.

-158 String data not allowed A string data element was encountered but was not allowed by the analyzer at this
point in parsing.

-160 Block data error This error can be generated when parsing a block data element. This particular error
message is used if the analyzer cannot detect a more specific error.

-161 Invalid block data

-168 Block data not allowed A legal block data element was encountered but was not allowed by the analyzer at
this point in parsing.

-170 Expression error This error can be generated when parsing an expression data element. It is used if the
analyzer cannot detect a more specific error.

-171 Invalid expression

-178 Expression data not allowed Expression data was encountered but was not allowed by the analyzer at this point in
parsing.

-200 Execution error This is a generic syntax error which is used if the analyzer cannot detect more specific
errors.

-220 Parameter error Indicates that a program data element related error occurred.

-221 Settings conflict Indicates that a legal program data element was parsed but could not be executed due
to the current device state.

-222 Data out of range Indicates that a legal program data element was parsed but could not be executed
because the interpreted value is outside the legal range defined by the analyzer.

-223 Too much data Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the analyzer could handle due to memory or
related analyzer-specific requirements.

-224 Illegal parameter value Used where exact value, from a list of possibles, was expected.

-225 Out of memory The device has insufficient memory to perform the requested operation.

-231 Data questionable Indicates that measurement accuracy is suspect.

-240 Hardware error Indicates that a legal program command or query could not be executed because of a
hardware problem in the device.

-241 Hardware missing Indicates that a legal program command or query could not be executed because of
missing device hardware; for example, an option was not installed, or current module
does not have hardware to support command or query. Definition of what constitutes
missing hardware is completely device-specific or module specific.

-250 Mass storage error Indicates that a mass storage error occurred.

-251 Missing mass storage Indicates that a legal program command or query could not be executed because of
missing mass storage; for example, an option that was not installed.

-252 Missing media Indicates that a legal program command or query could not be executed because of a
missing media; for example, no disk.

Table 30-1. Error Messages (Continued)
30-7

Error Messages
List of Error Messages

book.book Page 8 Friday, July 12, 2002 1:51 PM
-253 Corrupt media Indicates that a legal program command or query could not be executed because of
corrupt media; for example, bad disk or wrong format.

-254 Media full Indicates that a legal program command or query could not be executed because the
media was full; for example, there is no room on the disk.

-255 Directory full Indicates that a legal program command or query could not be executed because the
media directory was full.

-256 File name not found Indicates that a legal program command or query could not be executed because the
file name on the device media was not found; for example, an attempt was made to
read or copy a nonexistent file.

-257 File name error Indicates that a legal program command or query could not be executed because the
file name on the device media was in error; for example, an attempt was made to copy
to a duplicate file name.

-258 Media protected Indicates that a legal program command or query could not be executed because the
media was protected; for example, the write-protect tab on a disk was present.

-300 Service specific error

-310 System error Indicates that a system error occurred.

-340 Calibration failed Indicates that a calibration has failed.

-350 Queue overflow Indicates that there is no room in the error queue and an error occurred but was not
recorded.

-400 Query error This is the generic query error.

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-430 Query DEADLOCKED

-440 Query UNTERMINATED
after indefinite response

Table 30-1. Error Messages (Continued)
30-8

Index

book.book Page 1 Friday, July 12, 2002 1:51 PM
Numerics
707, 1-20

A
aborting a digitize operation, 1-19, 2-5
Acquire Commands, 11-2

AVERage, 11-2
BEST, 11-2
COUNt, 11-3
LTESt, 11-4
POINts, 11-4
RUNTil, 11-5
SSCReen, 11-6
SSCReen AREA, 11-8
SSCReen IMAGe, 11-8
SWAVeform, 11-9
SWAVeform RESet, 11-10

acquired data
distribution, 19-2
flow, 5-2

acquisition
points, 11-4
record length, 11-4
sample program, 7-8

Acquisition Event Register, 3-16
Acquisition Limits Event Enable register, 9-3
Acquisition Limits Event Register, 9-3
address, instrument default, 2-4
advisory line, reading and writing to, 10-2
AEEN, 9-3
AER, 3-16
ALER?, 9-3
ALIGn, 22-4
alphanumeric

characters in embedded string, 1-10
strings, 1-9

AMEThod, 22-4
AMPLitude, 23-7
analyzer, default address, 2-4
ANNotation, 23-6
APOWer, 23-6
AREA, 11-8, 18-2, 20-9, 22-19
Arm Event Register, ARM bit, 8-16
arming the trigger, 2-5
ASCII

and FORMat, 27-9

character 32, 1-4
linefeed, 1-10

attenuation factor, probe, 14-6
auto skew

command, 12-13
automatic measurements, sample programs,

7-9
AUToscale, 9-4

during initialization, 1-15
in sample program, 7-18

availability of measured data, 3-2
AVERage, and count, 11-2
AXIS, 19-4

B
BANDpass?, 27-5
BANDwidth, 14-2
bandwidth limit, 27-5
basic

command structure, 1-17
operations, 1-2

BEST, 11-2
bit definitions, status reporting, 3-4
BITRate, 23-8
BLANk, 9-5

and VIEW, 9-17
block data, 1-4, 1-21

and DATA, 27-7
in learnstring, 1-4

block diagram, status reporting overview, 3-3
BORDer, 19-6
BRATe, 26-2
buffer, output, 1-8, 1-20
buffered responses, 5-11
bus

activity, halting, 2-5
commands, 2-5
management issues, 2-2

BWLimit, 25-3
BYTE and FORMat, 27-10
BYTeorder, 27-5

and DATA, 27-9

C
C sample programs, 7-2
CALibrate, 24-6
Index-1

Index

book.book Page 2 Friday, July 12, 2002 1:51 PM
CANCel, 24-6
CONTinue, 24-7

calibration
mainframe, 12-2
module, 12-2
probe, 12-4
procedure, 12-14
status, 12-14

Calibration Commands, 12-5
CANCel, 12-5
CONTinue, 12-5
ERATio DLEVel? CHANnel<N>, 12-5
ERATio STARt CHANnel<N>, 12-6
FRAMe LABel, 12-6
FRAMe STARt, 12-7
FRAMe TIME?, 12-7
MODule LRESistance, 12-7
MODule OCONversion?, 12-8
MODule OPOWer, 12-8
MODule OPTical, 12-8
MODule OWAVelength, 12-9
MODule STATus?, 12-9
MODule TIME?, 12-9
MODule VERTical, 12-10
OUTPut, 12-10
PROBe, 12-11
PROBe CHANnel<N>, 12-11
Recommend?, 12-11
SAMPlers, 12-12
SDONe?, 12-12
SKEW, 12-13
SKEW AUTO, 12-13
STATus?, 12-14

CANCel, 12-5
CDIRectory, 15-2
CDISplay (Clear DISplay), 9-6
center screen voltage, 14-5
CGRade, 23-23, 27-16

AMPLitude, 23-7
BITRate, 23-8
COMPlete, 23-8
CROSsing, 23-10
DCDistortion, 23-11
DCYCle, 23-12
EHEight, 23-12
ERATio, 23-13
ESN, 23-14
EWIDth, 23-15

JITTer, 23-15
LEVels?, 16-2
OLEVel, 23-17
PEAK?, 23-18
SOURce, 23-19
ZLEVel, 23-20

Channel Commands, 14-2
BANDwidth, 14-2
DISPlay, 14-3
FDEScription?, 14-3
FILTer, 14-4
FSELect, 14-4
OFFSet, 14-5
PROBe, 14-6
PROBe CALibrate, 12-11, 14-6
RANGe, 14-6
SCALe, 14-7
TDRSkew, 14-8
UNITs, 14-9
UNITs ATTenuation, 14-9
UNITs OFFSet, 14-9
WAVelength, 14-9

channel-to-channel skew factor, 12-13
character program data, 1-9
CLEar, 23-20
clearing

buffers, 2-5
error queue, 3-17, 30-2
pending commands, 2-5
registers and queues, 3-18
Standard Event Status Register, 3-12, 8-5
status data structures, 8-3
TRG bit, 3-11

clipped signals, and measurement error, 23-5
clock recovery, 13-2

data rate, 13-2
phase locked status, 13-2
signal present status, 13-4

Clock Recovery Commands, 13-2
LOCKed?, 13-2
RATE, 13-2
SPResent?, 13-4

Clock Recovery Event Enable Register, 9-6
Clock Recovery Event Register, 3-14, 9-7
*CLS (Clear Status), 8-3
CME bit, 8-4–8-5
color grade database

downloading, 6-3
Index-2

Index

book.book Page 3 Friday, July 12, 2002 1:51 PM
using multiple databases, 6-3
combining

commands in same subsystem, 1-6
compound and simple commands, 1-11
long- and short-form headers, 1-8

Command
AEEN (Acquisition Limits Event Enable reg-

ister), 9-3
ALIGn, 22-4
AMEThod, 22-4
ANNotation, 23-6
APOWer, 23-6
AREA, 11-8, 18-2, 20-9, 22-19
AUToscale, 9-4
AVERage, 11-2
AXIS, 19-4
BANDwidth, 14-2
BEST, 11-2
BLANk, 9-5
BRATe, 26-2
BYTeorder, 27-5
CANCel, 12-5
CDIRectory, 15-2
CDISplay, 9-6
CGRade BITRate, 23-8
CGRade COMPlete, 23-8
CGRade CROSsing, 23-10
CGRade DCDistortion, 23-11
CGRade EHEight, 23-12
CGRade ERATio, 23-13
CGRade ESN, 23-14
CGRade EWIDth, 23-15
CGRade JITTer, 23-15
CGRade OLEVel, 23-17
CGRade ZLEVel, 23-19, 23-20
CHANnel PROBe, 14-6
CHANnel UNITs, 14-9
CLEar, 23-20
CLear Status (*CLS), 8-3
COMMents, 9-6
CONNect, 16-3
CONTinue, 12-5
COUNt, 11-3
CRATio, 23-9
CREE (Clock Recovery Event Enable Regis-

ter), 9-6
DATA, 27-7
DATE, 10-2

DCOLor, 16-3
DEFine, 23-21
DEFine CGRade, 23-22, 23-23
DEFine DELTatime, 23-22
DELete, 15-3, 22-7
DELTatime, 23-24
DIGitize, 1-18, 9-8
DISPlay, 14-3, 17-2, 28-3
DPRinter, 18-2
DSP, 10-3
DUTYCycle, 23-12
DUTYcycle, 23-25
ERATio STARt, 12-6
Event Status Enable (*ESE), 8-3
Event Status Register (*ESR?), 8-5
EXIT, 22-8
FACTors, 18-4
FAIL, 20-3
FALLtime, 23-26
FILTer, 14-4
FORMat, 27-9
FRAMe LABel, 12-6
FRAMe STARt, 12-7
FREQuency, 23-26
FSELect, 14-4
GRATicule, 16-4
GRATicule INTensity, 16-4
HEADer, 10-5
HORizontal, 17-4
HORizontal POSition, 17-4
HORizontal RANGe, 17-5
HYSTeresis, 25-4
Identification Number (*IDN?), 8-6
IMAGe, 11-8, 18-5, 20-10, 22-19
INVert, 17-6
LABel, 16-4
LEVel, 25-4
LLIMit, 20-4
LOAD, 15-4, 22-8, 28-3
LONGform, 10-6
LTEE (Limit Test Event Enable register),

9-10
MAGNify, 17-6
MASK DELete, 22-9
MAXimum, 17-7
MDIRectory, 15-5
MINimum, 17-7
MMARgin PERCent, 22-9
Index-3

Index

book.book Page 4 Friday, July 12, 2002 1:51 PM
MMARgin STATe, 22-10
MNFound, 20-4
MODE, 19-4
MODule LRESistance, 12-7
MODule OPOWer, 12-8
MODule OPTical, 12-8
MODule OWAVelength, 12-9
MODule VERTical, 12-10
MTEE (Mask Test Event Enable Register),

9-11
NWIDth, 23-34
OFACtor, 23-16
OFFSet, 14-5, 17-8
OPEE, 9-12
Operation Complete (*OPC), 8-7
Option (*OPT), 8-9
OUTPut, 12-10
OVERshoot, 23-35
PERiod, 23-36
PERSistence, 16-5
POINts, 11-4
POSition, 26-2
PREamble, 27-11
PRESet, 24-3
PRINt, 9-13
PROBe CALibrate, 14-6
PROBe CHANnel<N>, 12-11
PROPagation, 21-2
PWIDth, 23-18, 23-36
RANGe, 14-6, 17-9, 26-5
RATE, 13-2, 24-4
Recall (*RCL), 8-9
RECall SETup, 9-13
REFerence, 26-6
Reset (*RST), 8-10
RESPonse, 24-5
RESPonse CALibrate, 24-6
RESPonse CALibrate CANCel, 24-6
RESPonse CALibrate CONTinue, 24-7
RESPonse HORizontal, 24-7
RESPonse HORizontal POSition, 24-8
RESPonse HORizontal RANGe, 24-9
RESPonse RISetime, 24-10
RESPonse TDRDest, 24-11
RESPonse TDRTDT, 24-11
RESPonse TDTDest, 24-12
RESPonse VERTical, 24-13
RESPonse VERTical OFFSet, 24-14

RESPonse VERTical RANGe, 24-15
RISetime, 23-40
RPANnotation, 21-3
RUN, 9-14
RUNTil, 11-5, 20-6, 22-10
RUNTil (RUMode), 20-6
SAMPlers, 12-12
SAVE, 28-4
Save (*SAV), 8-14
SCALe, 14-7, 26-7
SCALe DEFault, 22-12
SCALe SIZE, 19-5
SCALe X1, 22-13
SCALe XDELta, 22-14
SCALe Y1, 22-15
SCALe Y2, 22-15
SCALe YTRack, 22-17
SCOLor, 16-7
SCRatch, 23-41
SENDvalid, 23-41
SERial, 9-14
Service Request Enable (*SRE), 8-14
SETup, 10-7
SIMage, 15-6
SINGle, 9-15
SKEW, 12-13
SLOPe, 25-4
SOURce, 20-7, 23-42, 25-5
SOURce CGRade, 27-16
SSAVer, 16-8
SSAVer AAFTer, 16-8
SSCReen, 11-6, 20-8, 22-17
SSCReen AREA, 11-8, 20-9, 22-19
SSCReen IMAGe, 11-8, 20-10, 22-19
SSUMmary, 20-10, 22-20
STARt, 22-21
STATe, 21-3
Status Byte (*STB?), 8-16
STIMulus, 24-16
STOP, 9-15
STORe, 15-7
STORe SETup, 9-15
STORe WAVEform, 9-16
SUBTract, 17-9
SWAVeform, 11-9, 20-11, 22-21
SWAVeform RESet, 11-10, 20-12, 22-22
TDRSkew, 14-8
TEST, 20-12, 22-23
Index-4

Index

book.book Page 5 Friday, July 12, 2002 1:51 PM
TIME, 10-9
TMAX, 23-44
TMIN, 23-45
Trigger (*TRG), 8-18
TRIGger ATTenuation, 25-3
UEE (User Event Enable register), 9-17
ULIMit, 20-13
UNITs, 26-7
UNITs ATTenuation, 14-9
UNITs OFFSet, 14-9
VAMPlitude, 23-46
VAVerage, 23-47
VBASe, 23-48
VERSus, 17-10
VERTical, 17-11
VERTical OFFSet, 17-11
VERTical RANGe, 17-12
VIEW, 9-17
VMAX, 23-49
VMIN, 23-50
VPP, 23-51
VRMS, 23-51
VTOP, 23-53
Wait-to-Continue (*WAI), 8-19
WAVeform BYTeorder, 27-5
WAVeform DATA, 27-7
WAVeform FORMat, 27-9
WAVeform PREamble, 27-11
WAVeform SOURce, 27-15
WAVelength, 14-9
WINDow BORDer, 19-6
WINDow DEFault, 19-6
WINDow SOURce, 19-6
WINDow X1Position, 19-7
WINDow X2Position, 19-8
WINDow Y1Position, 19-8
WINDow Y2Position, 19-9
X1Position, 21-4
X1Y1source, 21-5
X2Position, 21-5
X2Y2source, 21-6
XOFFset, 28-4
XRANge, 28-4
Y1Position, 21-7
Y2Position, 21-8
YOFFset, 28-5
YRANge, 28-6

command

data concepts, 2-3
embedded in program messages, 1-10
error, 30-3
error status bit, 3-4
execution and order, 4-4
mode, 2-3
structure, 1-17
trees, 5-4–5-7
types, 5-4

commas and spaces, 1-5
comma-separated, variable file format, 7-16
COMMents, 9-6
Common Commands, 8-2

Clear Status (*CLS), 8-3
Event Status Enable (*ESE), 8-3
Event Status Register (*ESR), 8-5
Identification Number (*IDN), 8-6
Learn (*LRN), 8-6
Operation Complete (*OPC), 8-7
Option (*OPT?), 8-9
Recall (*RCL), 8-9
Reset (*RST), 8-10
Save (*SAV), 8-14
Service Request Enable (*SRE), 8-14
Status Byte (*STB?), 8-16
Test (*TST?), 8-18
Trigger (*TRG), 8-18
Wait-to-Continue (*WAI), 8-19

common commands
header, 1-6
within a program message, 8-2

communicating over the bus, 2-4
COMPlete, 23-8
compound

command header, 1-6
queries, 4-4

concurrent commands, 5-11
CONNect, 16-3
CONTinue, 12-5
controller code and capability, 2-3
conventions of programming, 5-2
converting waveform data

from data value to Y-axis units, 27-3
sample program, 7-15

COUNt, 11-3
FAILures?, 22-5
FSAMples?, 22-5
HITS?, 22-6
Index-5

Index

book.book Page 6 Friday, July 12, 2002 1:51 PM
SAMPles?, 22-6
WAVeforms?, 22-7

COUNt?, 27-6
CRATio, 23-9
CREE, 9-6
CRER, 3-14
CRER?, 9-7
CROSsing, 23-10

D
DATA, 27-7
data

acquisition, 27-2
conversion, 27-3
flow, 5-2
in a learnstring, 1-4
in a program, 1-5
mode, 2-3
rate, clock recovery, 13-2
rate, setting, 13-2
structures, status reporting, 3-6, 9-3
transmission mode and FORMat, 27-9

DATA?, 16-3
database

downloading, 6-3
DATE, 10-2
DCDistortion, 23-11
DCOLor, 16-3
DCYCle, 23-12
DDE bit, 8-4–8-5
decimal 32 (ASCII space), 1-4
decision chart, status reporting, 3-19
DEFault, 19-6, 22-12
default

GPIB conditions, 2-2
instrument address, 2-4

DEFine, 23-21
CGRade, 23-23

defining functions, 17-2
definite length block response data, 1-21
DELete, 15-3, 22-7–22-9
deleting files, 15-3
DELTatime, 23-24
device

address, 1-3, 2-4
clear (DCL), 2-5
clear code and capability, 2-3

dependent data, 1-21
or analyzer-specific error, 30-4
trigger code and capability, 2-3

Device Dependent Error (DDE), Status Bit,
3-4

DIGitize, 9-8
digitize, aborting, 2-5
DIRectory?, 15-3
disabling serial poll, 2-5
Disk Commands, 15-2

CDIRectory, 15-2
DELete, 15-3
DIRectory?, 15-3
LOAD, 15-4
MDIRectory, 15-5
PWD?, 15-5
SIMage, 15-6
STORe, 15-7

DISPlay, 14-3, 17-2, 28-3
Display Commands, 16-2

CGRade LEVels?, 16-2
CONNect, 16-3
DATA?, 16-3
DCOLor, 16-3
GRATicule, 16-4
GRATicule INTensity, 16-4
LABel, 16-4
LABel DALL, 16-5
PERSistence, 16-5
RRATe, 16-6
SCOLor, 16-7
SSAVer, 16-8
SSAVer AAFTer, 16-8

display persistence, 16-5
DLEVel?, 12-5
DPRinter, 18-2
Driver Electronics code and capability, 2-3
DSP (display), 10-3
duplicate mnemonics, 1-7
duration between data points

and XINCrement, 27-18
DUTYcycle, 23-25

E
EHEight, 23-12
embedded

commands, 1-10
Index-6

Index

book.book Page 7 Friday, July 12, 2002 1:51 PM
strings, 1-2, 1-4, 1-10
Enable Register, 8-3
End Of String (EOS), 1-10
End Of Text (EOT), 1-10
End-Or-Identify (EOI), 1-10
EOI and IEEE 488.2, 5-11
ERATio, 23-13

DLEVel? CHANnel, 12-5
STARt CHANnel, 12-6
STATus?, 12-6

error
checking, sample program, 7-11
exceptions to protocol, 4-4
in measurements, 23-3
messages, 30-2
messages table, 30-6
numbers, 30-3
query interrupt, 1-8, 1-20

error queue, 30-2
and status reporting, 3-17
overflow, 30-2

ERRor?, 10-3
ESB (Event Status Bit), 3-4, 8-15–8-16
ESB (Event Summary Bit), 8-3
*ESE (Event Status Enable), 8-3
ESN, 23-14
*ESR? (Event Status Register), 8-5
ESR (Standard Event Status Register), 3-12
event

monitoring, 3-2
registers default, 2-2

Event Status Bit (ESB), 3-4
Event Status Enable (*ESE)

Status Reporting, 3-13
Event Summary Bit (ESB), 8-3
EWIDth, 23-15
example programs, 1-17

C and BASIC, 7-2
in initialization, 1-17

exceptions to protocol, 4-4
EXE bit, 8-4–8-5
execution

errors, 30-4
errors, and command errors, 30-3
of commands and order, 4-4

Execution Error (EXE), Status Bit, 3-4
EXIT, 22-8
exponential notation, 1-9

extensions, file, 1-11

F
FACTors, 18-4
FAIL, 20-3
FAILures?, 22-5
fall time measurement setup, 23-3
FALLtime, 23-26
FDESCription?, 14-3
file

locations, 1-13
names, 1-11
types, 1-11

FILTer, 14-4
flow of acquired data, 5-2
FORMat, 27-9

and DATA, 27-9
formatting query responses, 10-2
fractional values, 1-9
FRAMe

LABel, 12-6
STARt, 12-7
TIME?, 12-7

FREQuency, 23-26
frequency measurement setup, 23-3
FSAMples?, 22-5
FSELect, 14-4
full-scale vertical axis, 14-7
FUNCtion, 17-3
Function Commands, 17-2

DISPlay, 17-2
FUNCtion?, 17-3
HORizontal, 17-4
HORizontal POSition, 17-4
HORizontal RANGe, 17-5
INVert, 17-6
MAGNify, 17-6
MAXimum, 17-7
MINimum, 17-7
OFFSet, 17-8
RANGe, 17-9
SUBTract, 17-9
VERSus, 17-10
VERTical, 17-11
VERTical OFFSet, 17-11
VERTical RANGe, 17-12

functional elements of protocol, 4-2
Index-7

Index

book.book Page 8 Friday, July 12, 2002 1:51 PM
functions
and vertical scaling, 17-9
combining in instructions, 1-6
time scale, 17-2

G
GATed, 25-3
general bus management, 2-2
generating service request

sample program, 7-17–7-20
GPIB

default startup conditions, 2-2
interface connector, 2-2

GRATicule, 16-4
HARDcopy AREA, 11-8, 18-2, 20-9, 22-19

group execute trigger (GET), 2-5

H
halting bus activity, 2-5
handshake code and capabilities, 2-3
hardcopy

of the screen, 18-2
output and message termination, 4-4

Hardcopy Commands, 18-2
AREA, 18-2
DPRinter, 18-2
FACTors, 18-4
IMAGe, 11-8, 18-5, 22-19
PRINters?, 18-5

HEADer, 10-5
headers, 1-4

stripped, 7-14
types, 1-5
within instruction, 1-4

Histogram Commands, 19-2
AXIS, 19-4
MODE, 19-4
SCALe SIZE, 19-5
SOURce, 19-5
WINDow BORDer, 19-6
WINDow DEFault, 19-6
WINDow SOURce, 19-6
WINDow X1Position, 19-7
WINDow X2Position, 19-8
WINDow Y1Position, 19-8
WINDow Y2Position, 19-9

HITS?, 22-6, 23-27
HORizontal, 17-4, 24-7

POSition, 17-4, 24-8
RANGe, 17-5, 24-9

horizontal
functions, controlling, 26-2
offset, and XOFFset, 28-4
range, and XRANge, 28-4
scaling and functions, 17-2

host language, 1-4
hue, 16-8
HYSTeresis, in TRIGger, 25-4

I
*IDN? (Identification Number), 8-6
IEEE 488.1, 4-2

and IEEE 488.2 relationship, 4-2
definitions for interface, 2-2

IEEE 488.2, 4-2
compliance, 4-2
conformity, 1-2
standard, 1-2
Standard Status Data Structure Model, 3-2

IMAGe, 11-8, 18-5, 20-10, 22-19
image specifiers

and DATA, 27-8
and PREamble, 27-13
-K, 10-8

individual commands language, 1-2
infinity representation, 5-11
initialization, 1-15

event status, 3-2
instrument sample program, 7-7, 7-18
IO routine, 7-6
sample program, 7-5

input buffer, 4-3
clearing, 2-5
default condition, 4-3

instruction headers, 1-4
instrument

address, 2-4
default address, 2-4
status, 1-22

integer definition, 1-9
intensity, 16-4
interface

capabilities, 2-3
Index-8

Index

book.book Page 9 Friday, July 12, 2002 1:51 PM
clear (IFC), 2-5
functions, 2-2
initializing, 1-15
select code, 2-4

interpreting commands, parser, 4-3
interrupted query, 1-8, 1-20
INVert, 17-6
inverting functions, 17-6

J
JITTer, 23-15

K
-K, 10-8
K, and DATA, 27-8

L
LABel, 12-6, 16-4
language for program examples, 1-2
LCL, 3-14
Learn (*LRN), 8-6
learnstring block data, 1-4
LER?, 9-9
LEVel, in TRIGger, 25-4
Limit Test Commands, 20-2

FAIL, 20-3
LLIMit, 20-4
MNFound, 20-4
RUNtil, 20-6
SOURce, 20-7
SSCReen, 20-8
SSCReen AREA, 20-9
SSCReen IMAGe, 20-10
SSUMmary, 20-10
SWAVeform, 11-9, 20-11
SWAVeform RESet, 20-12
TEST, 20-12
ULIMit, 20-13

Limit Test Event Enable register, 9-10
Limit Test Event Register, 3-15, 9-10
linefeed, 1-10
list of error messages, 30-6
listener

code and capability, 2-3
unaddressing all, 2-5

LLIMit, 20-4
LOAD, 15-4, 22-8, 28-3
load resistance, 12-7
Local Event Register, 3-14, 9-9
locked status, querying, 13-2
LOCKed?, 13-2
LONGform, 10-6
long-form headers, 1-8
lowercase, 1-8

headers, 1-8
LRESistance, 12-7
*LRN (Learn), 8-6
*LRN?, and SYSTem SETup?, 10-9
LSBFirst, and BYTeorder, 27-5
LTEE, 9-10
LTER, 3-15
LTER?, 9-10
LTESt, 11-4
luminosity, 16-8

M
M1S?, 23-28
M2S?, 23-29
M3S?, 23-29
MAGNify, 17-6
making measurements, 23-4
managing bus issues, 2-2
Marker Commands, 21-2

PROPagation, 21-2
RPANnotation, 21-3
STATe, 21-3
X1Position, 21-4
X1Y1source, 21-5
X2Position, 21-5
X2Y2source, 21-6
XDELta?, 21-6
XUNits, 21-7
Y1Position, 21-7
Y2Position, 21-8
YDELta?, 21-9
YUNits, 21-9

mask
file format, 22-3
handling, 22-3

MASK DELete, 22-9
Mask Test Commands, 22-2

ALIGn, 22-4
Index-9

Index

book.book Page 10 Friday, July 12, 2002 1:51 PM
AMEThod, 22-4
COUNt FAILures?, 22-5
COUNt FSAMples?, 22-5
COUNt HITS?, 22-6
COUNt SAMPles?, 22-6
COUNt WAVeforms?, 22-7
DELete, 22-7
EXIT, 22-8
LOAD, 22-8
MASK DELete, 22-9
MMARgin PERCent, 22-9
MMARgin STATe, 22-10
RUNTil, 22-10
Save, 22-11
SCALe DEFault, 22-12
SCALe MODE, 22-12
SCALe X1, 22-13
SCALe XDELta, 22-14
SCALe Y1, 22-15
SCALe Y2, 22-15
SCALe YTRack, 22-17
SOURce, 22-16
SSCReen, 22-17
SSCReen AREA, 22-19
SSCReen IMAGe, 22-19
SSUMmary, 22-20
STARt, 22-21
SWAVeform, 22-21
SWAVeform RESet, 22-22
TEST, 22-23
TITLe?, 22-23

Mask Test Event Enable Register, 9-11
Mask Test Event Register, 3-16, 9-12
mask, Service Request Enable Register, 8-15
Master Summary Status (MSS)

and *STB, 8-16
Status Bit, 3-4

MAV (Message Available), 3-4
bit, 8-15–8-16

MAXimum, 17-7
MDIRectory, 15-5
MEAN?, 23-30
Measure Commands, 23-2

ANNotation, 23-6
APOWer, 23-6
CGRade AMPLitude, 23-7
CGRade BITRate, 23-8
CGRade COMPlete, 23-8

CGRade CRATio, 23-10
CGRade CROSsing, 23-10
CGRade DCDistortion, 23-11
CGRade DCYCle, 23-12
CGRade DUTYCycle, 23-12
CGRade EHEight, 23-12
CGRade ERATio, 23-13
CGRade ESN, 23-14
CGRade EWIDth, 23-15
CGRade JITTer, 23-15
CGRade OFACtor, 23-17
CGRade OLEVel, 23-17
CGRade PEAK?, 23-18
CGRade PWIDth, 23-18
CGRade SOURce, 23-19
CGRade ZLEVel, 23-20
CLEar, 23-20
DEFine, 23-21
DEFine CGRade, 23-22, 23-23
DEFine DELTatime, 23-22
DELTatime, 23-24
DUTYcycle, 23-25
FALLtime, 23-26
FREQuency, 23-26
HISTogram HITS?, 23-27
HISTogram M1S?, 23-28
HISTogram M2S?, 23-29
HISTogram M3S?, 23-29
HISTogram MEAN?, 23-30
HISTogram MEDian?, 23-30
HISTogram PP?, 23-31
HISTogram SCALe?, 23-33
HISTogram STDDev?, 23-33
NWIDth, 23-34
OVERshoot, 23-35
PERiod, 23-36
PWIDth, 23-36
RESults?, 23-37
RISetime, 23-40
SCRatch, 23-41
SENDvalid, 23-41
SOURce, 23-42
TEDGe?, 23-43
TMAX, 23-44
TMIN, 23-45
TVOLt?, 23-45
VAMPlitude, 23-46
VAVerage, 23-47
Index-10

Index

book.book Page 11 Friday, July 12, 2002 1:51 PM
VBASe, 23-48
VMAX, 23-49
VMIN, 23-50
VPP, 23-51
VRMS, 23-51
VTIMe?, 23-52
VTOP, 23-53

measurement
error, 23-3
setup, 23-3
source, 23-42

MEDian?, 23-30
message

communications and system functions, 4-2
exchange protocols of IEEE 488.2, 4-2
queue, 3-18
termination with hardcopy, 4-4

Message (MSG), Status Bit, 3-4
Message Available (MAV)

and *OPC, 8-9
Status Bit, 3-4

MINimum, 17-7
MMARgin

PERCent, 22-9
STATe, 22-10

mnemonic truncation, 5-4
MNFound, 20-4
MODE, 10-7, 19-4
MODel?, 9-11
MODule

LRESistance, 12-7
OCONversion?, 12-8
OPOWer, 12-8
OPTical, 12-8
OWAVelength, 12-9
STATus?, 12-9
TIME?, 12-9
VERTical, 12-10

monitoring events, 3-2
MSBFirst, and BYTeorder, 27-5
MSG bit, 8-15–8-16
MSS bit and *STB, 8-16
MTEE, 9-11
MTER, 3-16
MTER?, 9-12
multiple

numeric variables, 1-21
program commands, 1-11

queries, 1-21
subsystems, 1-11

multiple databases, 6-2, 6-3

N
NL (New Line), 1-10
numeric

program data, 1-9
variable example, 1-20
variables, 1-20

NWIDth, 23-34

O
OCONversion?, 12-8
OFACtor, 23-16
OFFSet, 14-5, 17-8, 24-14
OLEVel, 23-17
*OPC (Operation Complete), 8-7
OPC bit, 8-4–8-5
OPEE, 9-12
OPER bit, 8-15–8-16
OPER?, 9-13
operands and time scale, 17-2
operating the disk, 15-2
Operation Complete (*OPC), 8-7

Status Bit, 3-4
operation status, 3-2
Operation Status Register, 3-14
OPOWer, 12-8
OPR, 3-14
*OPT (Option), 8-9
OPTical, 12-8
options, program headers, 1-8
order of commands and execution, 4-4
OUTPut, 12-10
output buffer, 1-8, 1-20
output queue, 1-7, 3-18

clearing, 2-5
default condition, 4-3
definition, 4-3

OUTPUT statement, 1-3
overlapped and sequential commands, 5-11
OVERshoot, 23-35
OWAVelength, 12-9
Index-11

Index

book.book Page 12 Friday, July 12, 2002 1:51 PM
P
Parallel Poll code and capability, 2-3
parametric measurements, 23-2
parser, 1-15, 4-3

default condition, 4-3
definition, 4-3
resetting, 2-5

passing values across the bus, 1-7
PEAK?, 23-18
peak-to-peak voltage, and VPP, 23-51
pending commands, clearing, 2-5
PERCent, 22-9
PERiod, 23-36
period measurement setup, 23-3
PERsistence, 16-5
phase lock status, 13-2
POINts, 11-4
POINts?, 27-11
PON bit, 8-5
POSition, 24-8, 26-2
pound sign (#) and block data, 1-21
Power On (PON) status bit, 3-4, 8-4
power-up condition of GPIB, 2-2
PP?, 23-31
PREamble, 27-11

and DATA, 27-9
Precision Timebase Event Register, 3-17
PRESet, 24-3
PRINt, 9-13
PRINters?, 18-5
printing

specific screen data, 18-2
the screen, 18-2

probe
attenuation factor, 14-6
calibration, 12-4

PROBe CALibrate, 12-11, 14-6
PROBe CHANnel, 12-11
programming

basics, 1-2
conventions, 5-2
data, 1-5
example, 1-17
examples, language, 1-2
getting started, 1-15
header options, 1-8
message terminator, 1-10

overview, initialization example, 1-17
PROPagation, 21-2
protocol, exceptions and operation, 4-3
PTER, 3-17
pulse width measurement setup, 23-3
PWD?, 15-5
PWIDth, 23-18, 23-36

Q
quantization levels, 7-15
Query, 1-4, 1-7

*ESE? (Event Status Enable), 8-3
*ESR? (Event Status Register), 8-5
*SRE?, 8-15
*STB? (Status Byte), 8-16
AEEN?, 9-3
ALER? (Acquisition Limits Event Register),

9-3
AMEThod?, 22-4
AMPLitude?, 23-7
ANNotation?, 23-6
APOWer?, 23-7
AREA?, 11-8, 18-2, 20-9, 22-19
AVERage?, 11-2
AXIS?, 19-4
BANDpass?, 27-5
BANDwidth?, 14-2
BEST?, 11-3
BORDer?, 19-6
BRATe?, 26-2
BWLimit?, 25-3
BYTeorder?, 27-6
CGRade AMPLitude?, 23-7
CGRade BITRate, 23-8
CGRade COMPlete?, 23-9
CGRade CROSsing?, 23-10
CGRade DCDistortion?, 23-11
CGRade EHEight?, 23-13
CGRade ERATio?, 23-13
CGRade EWIDth?, 23-15
CGRade JITTer?, 23-16
CGRade LEVels?, 16-2
CGRade PEAK?, 23-18
CGRade QFACtor?, 23-14, 23-17, 23-20
COMMents?, 9-6
CONNect?, 16-3
COUNt FAILures?, 22-5
Index-12

Index

book.book Page 13 Friday, July 12, 2002 1:51 PM
COUNt FSAMples?, 22-5
COUNt HITS?, 22-6
COUNt SAMPles?, 22-6
COUNt WAVeforms?, 22-7
COUNt?, 11-3, 27-6
CRATio, 23-10
CREE?, 9-7
CRER?, 9-7
DATA?, 16-3, 27-8
DATE?, 10-2
DELTatime, 23-24
DIRectory?, 15-3
DISPlay?, 14-3, 17-3, 28-3
DLEVel?, 12-5
DPRinter?, 18-3
DSP?, 10-3
DUTYCycle, 23-12
DUTYcycle?, 23-25
ERATio DLEVel?, 12-5
ERRor?, 10-3
FACTors?, 18-5
FAIL?, 20-3
FALLtime?, 23-26
FDEScription?, 14-3
FORMat?, 27-10
FRAMe TIME?, 12-7
FREQuency?, 23-27
FUNCtion?, 17-3
GRATicule?, 16-4
HEADer?, 10-5
HISTogram M1S?, 23-28
HISTogram M2S?, 23-29
HISTogram M3S?, 23-29
HISTogram MEAN?, 23-30
HISTogram MEDian?, 23-30
HISTogram PP?, 23-31
HISTogram SCALe?, 23-33
HISTogram STDDev?, 23-33
HITS?, 23-27
HORizontal POSition?, 17-5
HORizontal RANGe?, 17-5
HORizontal?, 17-4
Identification Number (*IDN?), 8-6
IMAGe?, 11-8, 18-5, 20-10, 22-20
Learn (*LRN?), 8-6
LER? (Local Event Register), 9-9
LLIMit?, 20-4
LOCKed?, 13-2

LONGform?, 10-6
LTEE?, 9-10
LTER? (Limit Test Event Register), 9-10
MEASure FALLtime?, 23-26
MMARgin PERCent?, 22-9
MMARgin STATe?, 22-10
MNFound?, 20-5
MODE?, 10-7, 19-4
MODel?, 9-11
MODule LRESistance?, 12-7
MODule OCONversion?, 12-8
MODule STATus?, 12-9
MODule TIME?, 12-9
MTEE?, 9-12
MTER? (Mask Test Event Register), 9-12
NWIDth?, 23-34
OFACtor, 23-17
OFFSet?, 14-5, 17-8
OPEE?, 9-12
OPER?, 9-13
Option (*OPT?), 8-9
OUTPut?, 12-10
OVERshoot?, 23-35
PERiod?, 23-36
PERSistence?, 16-6
POINts?, 11-4, 27-11
POSition?, 26-3
PREamble?, 27-13
PRINters?, 18-5
PROPagation?, 21-2
PWD?, 15-5
PWIDth, 23-18
PWIDth?, 23-37
RANGe?, 14-7, 17-9, 26-6
RATE?, 13-3, 24-3, 24-4
Recommend?, 12-11
REFerence?, 26-6
RESPonse HORizontal POSition?, 24-9
RESPonse HORizontal RANGe?, 24-9
RESPonse HORizontal?, 24-8
RESPonse RISetime?, 24-10
RESPonse TDRDest?, 24-11
RESPonse TDTDest?, 24-13
RESPonse VERTical OFFSet?, 24-15
RESPonse VERTical RANGe?, 24-15
RESPonse VERTical?, 24-14
RESPonse?, 24-5
RESults?, 23-37
Index-13

Index

book.book Page 14 Friday, July 12, 2002 1:51 PM
RISetime?, 23-40
RUNTil?, 11-6, 20-6, 22-11
SAMPlers?, 12-12
SCALe SIZE?, 19-5
SCALe SOURce?, 22-13
SCALe X1?, 22-14
SCALe XDELta?, 22-14
SCALe Y1?, 22-15
SCALe Y2?, 22-16
SCALe?, 14-8, 26-7
SCOLor?, 16-8
SDONe?, 12-12
SENDvalid?, 23-41
SERial?, 9-14
SETup?, 10-8
SKEW?, 12-13
SLOPe?, 25-4
SOURce?, 19-7, 20-7, 23-19, 23-42, 25-5,

27-16
SPResent?, 13-4
SSAVer AAFTer?, 16-9
SSAVer?, 16-9
SSCReen?, 11-7, 20-9, 22-18
SSUMmary?, 22-21
STATe?, 21-4
Status Byte (*STB?), 8-16
STATus?, 12-9, 12-14
STIMulus?, 24-17
SWAVeform?, 11-10, 20-12, 22-22
TBASe?, 23-48
TDRSkew?, 14-8
TEDGe?, 23-43
TER?, 9-16
Test (*TST?), 8-18
TEST?, 20-13, 22-23
TIME?, 12-7, 12-9
TITLe?, 22-23
TMAX, 23-44
TMIN, 23-45
TRIG HYSTeresis?, 25-4
TRIG LEVel?, 25-4
TVOLt?, 23-45
TYPE?, 27-17
UEE?, 9-17
UER?, 9-17
ULIMit?, 20-14
UNITs OFFSet, 14-9
UNITs?, 14-9, 26-7

VAMPlitude?, 23-47
VAVerage, 23-48
VERTical OFFSet?, 17-12
VERTical RANGe, 17-12
VMAX?, 23-49
VMIN?, 23-50
VPP?, 23-51
VRMS?, 23-52
VTIMe?, 23-52
VTOP?, 23-53
WAVelength?, 14-10
X1Position?, 19-7, 21-4
X1Y1source?, 21-5
X2Position?, 19-8, 21-5
X2Y2source?, 21-6
XDELta?, 21-6
XDISplay?, 27-18
XINCrement?, 27-18
XOFFset?, 28-4
XORigin?, 27-19
XRANge?, 27-19, 28-5
XREFerence?, 27-20
XUNits?, 21-7, 27-20
Y1Position?, 19-8, 21-8
Y2Position?, 19-9
YDELta?, 21-9
YDISplay?, 27-21
YINCrement?, 27-21
YOFFset?, 28-5
YORigin?, 27-22
YRANge?, 27-22, 28-6
YREFerence?, 27-23
YUNits?, 21-9, 27-23

query
headers, 1-7
interrupt, 1-8, 1-20
response, 1-19
responses, formatting, 10-2

query error, 30-5
QYE Status Bit, 3-4

querying locked status, 13-2
question mark, 1-7
queue, output, 1-7
quotes, with embedded strings, 1-10
QYE bit, 8-4–8-5
Index-14

Index

book.book Page 15 Friday, July 12, 2002 1:51 PM
R
RANGe, 14-6, 17-9, 24-9, 24-15, 26-5
RATE, 13-2, 24-4
*RCL (Recall), 8-9
real number definition, 1-9
RECall SETup, 9-13
receiving

common commands, 8-2
information from the instrument, 1-19

Recommend?, 12-11
recovery, clock, 13-2
REFerence, 26-6
register

save/recall, 8-10, 8-14
Standard Event Status Enable, 3-13

reliability of measured data, 3-2
remote

local code and capability, 2-3
programming basics, 1-2

remote screen capture, 15-6
representation of infinity, 5-11
Request Control (RQC) status bit, 3-4
Request Service (RQS)

default, 2-2
status bit, 3-4

Reset (*RST), 8-10
resetting the parser, 2-5
RESPonse, 24-5

CALibrate, 24-6
CALibrate CANCel, 24-6
CALibrate CONTinue, 24-7
HORizontal, 24-7
HORizontal POSition, 24-8
HORizontal RANGe, 24-9
RISetime, 24-10
TDRDest, 24-11
TDRTDT, 24-11
TDTDest, 24-12
VERTical, 24-13
VERTical OFFSet, 24-14
VERTical RANGe, 24-15

response
buffered, 5-11
data, 1-21
generation, 5-11

result state code, and SENDvalid, 23-41
RESults?, 23-37

retrieval and storage, 15-2
returning control to system controller, 2-5
rise time measurement setup, 23-3
RISetime, 23-40, 24-10
RMS voltage, and VRMS, 23-51
Root level commands, 9-2

AEEN, 9-3
ALER?, 9-3
AUToscale, 9-4
BLANk, 9-5
CDISplay, 9-6
COMMents, 9-6
CREE, 9-6
CRER?, 9-7
DIGitize, 9-8
LER?, 9-9
LTEE, 9-10
LTER?, 9-10
MODel?, 9-11
MTEE, 9-11
MTER?, 9-12
OPEE, 9-12
OPER?, 9-13
PRINt, 9-13
RECall SETup, 9-13
RUN, 9-14
SERial, 9-14
SINGle, 9-15
STOP, 9-15
STORe SETup, 9-15
STORe WAVEform, 9-16
TER?, 9-16
UEE, 9-17
UER?, 9-17
VIEW, 9-17

RPANnotation, 21-3
RQC (Request Control), 3-4

bit, 8-4–8-5
RQS (Request Service), 3-4

and *STB, 8-16
default, 2-2

RQS/MSS bit, 8-16
RRATe, 16-6
*RST (Reset), 7-18, 8-10
rules

of traversal, 5-5
of truncation, 5-3

RUN, 9-14
Index-15

Index

book.book Page 16 Friday, July 12, 2002 1:51 PM
and GET relationship, 2-5
RUNTil, 11-5, 20-6, 22-10

S
sample programs, 7-2

segments, 7-3
sample rate, number of points, 11-4
SAMPlers, 12-12
SAMPles?, 22-6
saturation, 16-8
*SAV (Save), 8-14
SAVE, 22-11, 28-4
save/recall register, 8-10, 8-14
SCALe, 14-7, 26-7

DEFault, 22-12
MODE, 22-12
SIZE, 19-5
SOURce?, 22-13
X1, 22-13
XDELta, 22-14
Y1, 22-15
Y2, 22-15

SCALe?, 23-33
SCOLor, 16-7
SCRatch, 23-41
screen captures, 15-6
SCReen HARDcopy AREA, 11-8, 18-2, 20-9,

22-19
SDONe?, 12-12
segments of sample programs, 7-3
selected device clear (SDC), 2-5
selecting multiple subsystems, 1-11
self test, 8-18
semicolon usage, 1-6
sending compound queries, 4-4
SENDvalid, 23-41
separator, 1-4
sequential and overlapped commands, 5-11
SERial (SERial number), 9-14
serial poll

(SPOLL) in example, 3-10
disabling, 2-5
of the Status Byte Register, 3-10

serial prefix, reading, 8-6
Service Request

code and capability, 2-3
sample program, 7-17

Service Request Enable
(*SRE), 8-14
Register (SRE), 3-11
Register Bits, 8-15
Register default, 2-2

setting
data rates, 13-2
horizontal tracking, 17-4
Service Request Enable Register bits, 3-11
Standard Event Status Enable Register bits,

3-13
time and date, 10-9
TRG bit, 3-11
voltage and time markers, 21-2

setting up
for programming, 1-15
service request, 7-19
the instrument, 1-16

SETup, 10-7
setup

recall, 8-9
storing, 15-7

short form, 1-8
headers, 1-8
mnemonics, 5-3

signal present
conditions, 13-2
status, 13-4

SIMage, 15-6
simple command header, 1-5
SINGle, 9-15
SKEW AUTO, 12-13
SKEW, in CALibrate command, 12-13
SLOPe, 25-4
software version, reading, 8-6
SOURce, 19-5, 19-6, 20-7, 22-16, 23-19, 23-42,

25-5, 27-15
and measurements, 23-4
CGRade, 27-16

SOURce?, 22-13
spaces and commas, 1-5
spelling of headers, 1-8
SPOLL example, 3-10
SPResent?, 13-4
*SRE (Service Request Enable), 8-14
SRE (Service Request Enable Register), 3-11
SSAVer, 16-8
SSCReen, 11-6, 20-8, 22-17
Index-16

Index

book.book Page 17 Friday, July 12, 2002 1:51 PM
SSCReen AREA, 11-8
SSCReen IMAGe, 11-8
SSUMmary, 20-10, 22-20
Standard Event Status Enable Register

(SESER), 3-13
bits, 8-4
default, 2-2

Standard Event Status Register (ESR), 3-12
bits, 8-5

Standard Status Data Structure Model, 3-2
STARt, 12-6–12-7, 22-21
STATe, 21-3, 22-10
status, 1-22

of an operation, 3-2
registers, 1-22, 8-2
reporting data structures, 9-3

Status Byte (*STB), 8-16
Status Byte Register, 3-9–3-10

and serial polling, 3-10
bits, 8-16
default, 2-2

status reporting, 3-2
bit definitions, 3-4
data structures, 3-6
decision chart, 3-19

STATus, in CALibrate command, 12-14
STATus?, 12-6, 12-9
*STB (Status Byte), 8-16
STDDev?, 23-33
STIMulus, 24-16
STOP, 9-15
storage and retrieval, 15-2
STORe, 15-7

SETup, 9-15
WAVEform, 9-16

storing waveform, sample program, 7-16
string

alphanumeric, 1-9
variables, 1-20
variables, example, 1-20

SUBTract, 17-9
suffix

multipliers, 1-9, 4-4
units, 4-5

summary bits, 3-9
SWAVeform, 11-9, 20-11, 22-21
SWAVeform RESet, 11-10, 20-12, 22-22
syntax error, 30-3

System Commands, 10-2
DATE, 10-2
DSP, 10-3
ERRor?, 10-3
HEADer, 10-5
LONGform, 10-6
MODE, 10-7
SETup, 10-7
TIME, 10-9

system controller, 2-5
SYSTem SETup and *LRN, 8-7

T
talker

code and capability, 2-3
unaddressing, 2-5

TDR Commands, 24-2
PRESet, 24-3
RATE, 24-4
RESPonse, 24-5
RESPonse CALibrate, 24-6
RESPonse CALibrate CANCel, 24-6
RESPonse CALibrate CONTinue, 24-7
RESPonse HORizontal, 24-7
RESPonse HORizontal POSition, 24-8
RESPonse HORizontal RANGe, 24-9
RESPonse RISetime, 24-10
RESPonse TDRDest, 24-11
RESPonse TDRTDT, 24-11
RESPonse TDTDest, 24-12
RESPonse VERTical, 24-13
RESPonse VERTical OFFSet, 24-14
RESPonse VERTical RANGe, 24-15
STIMulus, 24-16

TDRDest, 24-11
TDRSkew, 14-8
TDRTDT, 24-11
TDTDest, 24-12
TEDGe, in MEASure command, 23-43
temperature and calibration, 12-2
TER? (Trigger Event Register), 9-16
termination of message during hardcopy, 4-4
terminator, program message, 1-10
TEST, 20-12, 22-23
Test (*TST), 8-18
THReshold, and DEFine, 23-21
TIME, 10-9
Index-17

Index

book.book Page 18 Friday, July 12, 2002 1:51 PM
time and date, setting, 10-2
time base

scale and number of points, 11-4
Time Base Commands, 26-2

BRATe, 26-2
POSition, 26-2
RANGe, 26-5
REFerence, 26-6
SCALe, 26-7
UNITs, 26-7

time buckets, and POINts?, 27-11
time information of waveform, 7-16
time scale, operands and functions, 17-2
TIME?, 12-7, 12-9
timing measurements, displaying, 19-2
TITLe?, 22-23
TMAX, 23-44
TMIN, 23-45
TOPBase, and DEFine, 23-21–23-22
transferring waveform data, 27-2

sample program, 7-13
transmission mode, and FORMat, 27-9
traversal rules, 5-5
tree traversal

examples, 5-10
rules, 5-5

*TRG (Trigger), 8-18
TRG (Trigger Event Register), 3-11

bit, 8-16–8-17
bit in the status byte, 3-11
Event Enable Register, 3-4

Trigger (*TRG), 8-18
status bit, 3-4

Trigger Commands, 25-2
ATTenuation, 25-3
BWLimit, 25-3
GATed, 25-3
HYSTeresis, 25-4
LEVel, 25-4
SLOPe, 25-4
SOURce, 25-5

Trigger Event Register (TRG), 3-11
trigger status, 13-2
truncating numbers, 1-9
truncation rule, 5-3
*TST (Test), 8-18
TVOLt?, 23-45
TYPE?, 27-17

U
UEE (User Event Enable register), 9-17
UER, 3-13
UER? (User Event Register), 9-17
ULIMit, 20-13
unaddressing all listeners, 2-5
UNITs, 14-9, 26-7

ATTenuation, 14-9
OFFSet, 14-9

uppercase, 1-8
headers, 1-8
letters and responses, 1-9

URQ bit (User Request), 8-3
User Event Enable register, 9-17
User Event Register, 3-13, 9-17
User Request (URQ) status bit, 8-4
User Request Bit (URQ), 8-3
user-defined measurements, 23-3
USR bit, 8-16–8-17

V
VAMPlitude, 23-46
VAVerage, 23-47
VBASe, 23-48
version of software, reading, 8-6
VERSus, 17-10
VERTical, 12-10, 17-11, 24-13

OFFSet, 24-14
RANGe, 24-15

vertical
axis control, 14-2
axis offset, and YRANge, 28-5
axis, full-scale, 14-7
scaling and functions, 17-2
scaling, and YRANge, 28-6

vertical calibration, 12-7
VERTical OFFSet, 17-11
VERTical RANGe, 17-12
VIEW, 9-17
VIEW and BLANk, 9-5
VMAX, 23-49
VMIN, 23-50
voltage

at center screen, 14-5
measurements, displaying, 19-2
of waveform, 7-16
Index-18

Index

book.book Page 19 Friday, July 12, 2002 1:51 PM
VPP, 23-51
VRMS, 23-51
VTIMe?, 23-52
VTOP, 23-53

W
W, and DATA, 27-8
*WAI (Wait-to-Continue), 8-19
Wait-to-Continue (*WAI), 8-19
waveform

data and preamble, 27-2
SOURce and DATA, 27-7
storing, 15-7
storing time and voltage, 7-16
time and voltage information, 7-16

Waveform Commands, 27-2
BANDpass?, 27-5
BYTeorder, 27-5
COUNt?, 27-6
DATA, 27-7
FORMat, 27-9
POINts?, 27-11
PREamble, 27-11
SOURce, 27-15
SOURce CGRade, 27-16
TYPE?, 27-17
XDISplay?, 27-18
XINCrement?, 27-18
XORigin?, 27-19
XRANge?, 27-19
XREFerence?, 27-20
XUNits?, 27-20
YDISplay?, 27-21
YINCrement?, 27-21
YORigin?, 27-22
YRANge?, 27-22
YREFerence?, 27-23
YUNits?, 27-23

Waveform Memory Commands, 28-2
DISPlay, 28-3
LOAD, 28-3
SAVE, 28-4
XOFFset, 28-4
XRANge, 28-4
YOFFset, 28-5
YRANge, 28-6

waveform memory, and DATA, 27-7

waveform type
and COUNt?, 27-6
and TYPE?, 27-17

WAVeforms?, 22-7
WAVelength, 14-9
white space (separator), 1-4
WINDow

BORDer, 19-6
DEFault, 19-6
SOURce, 19-6
X1Position, 19-7
X2Position, 19-8
Y1Position, 19-8
Y2Position, 19-9

WORD and FORMat, 27-10

X
X vs Y, 17-10
X1, 22-13
X1Position, 19-7, 21-4
X1Y1source, 21-5
X2Position, 19-8, 21-5, 21-8
X2Y2source, 21-6
x-axis

controlling, 26-2
duration, and XRANge?, 27-20
offset, and XOFFset, 28-4
range, and XRANge, 28-4
units, and XUNits, 27-20

XDELta, 22-14
XDELta?, 21-6
XDISplay?, 27-18
XINCrement?, 27-18
XOFFset, 28-4
XORigin?, 27-19
XRANge, 28-4
XRANge?, 27-19
XREFerence?, 27-20
XUNits, 21-7
XUNits?, 27-20

Y
Y1, 22-15
Y1Position, 19-8, 21-7
Y2, 22-15
Y2Position, 19-9
Index-19

Index

book.book Page 20 Friday, July 12, 2002 1:51 PM
Y-axis control, 14-2
YDELta?, 21-9
YDISplay?, 27-21
YINCrement?, 27-21
YOFFset, 28-5
YORigin?, 27-22
YRANge, 28-6
YRANge?, 27-22
YREFerence?, 27-23
YUNits, 21-9
YUNits?, 27-23

Z
ZLEVel, 23-20
Index-20

	Agilent 86100A/B Programmer's Guide
	Contents
	Introduction
	Interface Functions
	Status Reporting
	Message Communication and System Functions
	Programming Conventions
	Using Multiple Databases
	Sample Programs
	Common Commands
	Root Level Commands
	System Commands
	Acquire Commands
	Calibration Commands
	Clock Recovery Commands
	Channel Commands
	Disk Commands
	Display Commands
	Function Commands
	Hardcopy Commands
	Histogram Commands
	Limit Test Commands
	Marker Commands
	Mask Test Commands
	Measure Commands
	TDR/TDT Commands
	Trigger Commands
	Timebase Commands
	Waveform Commands
	Waveform Memory Commands
	Language Compatibility
	Error Messages
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index

